• 제목/요약/키워드: Long short time memory

검색결과 295건 처리시간 0.03초

피드백 샘플 반복 활용을 이용한 다지털 전치 왜곡 방안 (Digital Pre-Distortion Technique Using Repeated Usage of Feedback Samples)

  • 이광표;홍순일;정의림
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.673-676
    • /
    • 2015
  • 디지털 전치 왜곡기법은 비선형 전력증폭기의 역함수에 해당하는 디지털 전치왜곡 특성을 찾아 송신신호를 미리 왜곡 시켜줌으로써 비선형 전력증폭기를 선형화시키는 기술이다. 일반적으로 전력증폭기는 시간과 전력 그리고 온도에 따라 비선형 특성이 변하기 때문에 디지털 전치왜곡기법에서는 송신신호와 되먹임 신호를 주기적으로 메모리(RAM)에 저장하여 전력증폭기 특성 함수의 역함수인 전치 왜곡 계수를 찾게 된다. 하지만 적응형 알고리즘이 원하는 전치왜곡 계수에 수렴하기 위해서는 긴 샘플이 요구되는데 이는 많은 메모리를 요구한다. 본 논문에서는 전치왜곡 엔진부에서 짧은 길이의 메모리를 사용하지만 이 메모리의 샘플을 재활용하여 반복 연산 수행을 통해 긴 용량의 메모리를 이용하여 구현하였을 경우와 유사한 성능을 얻는 방법을 제안하며 이를 컴퓨터 모의실험을 통해 성능 비교 분석한다.

  • PDF

외재적 변수를 이용한 딥러닝 예측 기반의 도시가스 인수량 예측 (Deep Learning Forecast model for City-Gas Acceptance Using Extranoues variable)

  • 김지현;김지은;박상준;박운학
    • 한국가스학회지
    • /
    • 제23권5호
    • /
    • pp.52-58
    • /
    • 2019
  • 본 연구에서는 국내 도시가스 인수량에 대한 예측 모델을 개발하였다. 국내의 도시가스 회사는 KOGAS에 차년도 수요를 예측하여 보고해야 하므로 도시가스 인수량 예측은 도시가스 회사에 중요한 사안이다. 도시가스 사용량에 영향을 미치는 요인은 용도구분에 따라 다소 상이하나, 인수량 데이터는 용도별 구분이 어렵기 때문에 특정 용도에 관계없이 영향을 주는 요인으로 외기온도를 고려하여 모델개발을 실시하였다.실험 및 검증은 JB주식회사의 2008년부터 2018년까지 총 11년 치 도시가스 인수량 데이터를 사용하였으며, 전통적인 시계열 분석 중 하나인 ARIMA(Auto-Regressive Integrated Moving Average)와 딥러닝 기법인 LSTM(Long Short-Term Memory)을 이용하여 각각 예측 모델을 구축하고 두 방법의 단점을 최소화하기 위하여 다양한 앙상블(Ensemble) 기법을 사용하였다. 본 연구에서 제안한 일별 예측의 오차율 절댓값 평균은 Ensemble LSTM 기준 0.48%, 월별 예측의 오차율 절댓값 평균은 2.46%, 1년 예측의 오차율 절댓값 평균은 5.24%임을 확인하였다.

LSTM 모형을 이용한 하천 고탁수 발생 예측 연구 (Prediction of high turbidity in rivers using LSTM algorithm)

  • 박정수;이현호
    • 상하수도학회지
    • /
    • 제34권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.

PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지 (Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals)

  • 송용욱;백수정
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.

BIS(Bus Information System) 정확도 향상을 위한 머신러닝 적용 방안 연구 (A Study on the Application of Machine Learning to Improve BIS (Bus Information System) Accuracy)

  • 장준용;박준태
    • 한국ITS학회 논문지
    • /
    • 제21권3호
    • /
    • pp.42-52
    • /
    • 2022
  • BIS(Bus Information System) 서비스는 대도시를 포함하여 중소도시까지 전국적으로 확대운영되는 추세이며, 이용자의 만족도는 지속적으로 향상되고 있다. 이와 함께 버스도착시간 신뢰성 향상 관련 기술개발, 오차 최소화를 위한 개선 연구가 지속되고 있으며 무엇보다 정보 정확도의 중요성이 부각되고 있다. 본 연구에서는 기계학습 방법인 LSTM을 이용하여 정확도 성능을 평가하였으며 기존 칼만필터, 뉴럴 네트워크 등 방법론과 비교하였다. 실제 여행시간과 예측값에 대해 표준오차를 분석한 결과 LSTM 기계학습 방법이 기존 알고리즘에 비해 정확도는 약 1% 높고, 표준오차는 약 10초 낮은 것으로 분석되었다. 반면 총 162개 구간 중 109개 구간(67.3%) 우수한 것으로 분석되어 LSTM 방법이 전적으로 우수한 것은 아닌 것으로 나타났다. 구간 특성 분석을 통한 알고리즘 융합시 더욱 향상된 정확도 예측이 가능할 것으로 판단된다.

하천 수위 예측 모델을 위한 기상 데이터 비교 연구 (Comparative study of meteorological data for river level prediction model)

  • 조민우;윤진욱;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.491-493
    • /
    • 2022
  • 세계 각지에서 집중호우, 태풍 등으로 인한 홍수 피해가 많이 발생하고 있으며, 이러한 피해를 줄이기 위해 홍수를 미리 예측하는 것은 수해 피해 관리 차원에서 필수적인 요소이다. 본 논문에서는 홍수예측을 위한 핵심 파라미터인 수위, 강수량, 그리고 습도 데이터를 입력 데이터로 활용한 수위 예측 모델을 제안한다. 많은 연구 분야에서 이미 시계열 데이터 예측 성능이 검증된 LSTM 및 GRU 모델을 기반으로 기상청에서 제공하는 종관기상관측 자료와, 방재기상관측 자료를 활용하여 입력 데이터셋을 다르게 구축하고, 성능 비교 실험을 진행하였다. 결과적으로 종관기상관측 자료를 사용했을 때 가장 좋은 결과를 얻었다. 본 논문을 통해 입력 데이터에 따른 성능 비교 실험을 진행하였고, 향후 연구로 홍수 위험도 판별 모델과 연계하여 사전에 대피 결정이 가능한 시스템 개발의 초기 연구로서 활용될 수 있을 것으로 사료된다.

  • PDF

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.

시계열 자료의 단변량 웨이블릿 분석을 위한 모 웨이블릿의 선정 (Selecting a mother wavelet for univariate wavelet analysis of time series data)

  • 이현욱;이진욱;유철상
    • 한국수자원학회논문집
    • /
    • 제52권8호
    • /
    • pp.575-587
    • /
    • 2019
  • 본 연구에서는 모 웨이블릿(mother wavelet)이 웨이블릿 분석에 미치는 영향을 파악하기 위해 먼저 백색잡음과 사인함수를 다양하게 결합한 시계열의 분석을 수행하고 그 결과를 각각 단기기억특성과 장기기억특성을 보이는 북극진동지수(AOI)와 남방진동지수(SOI)에 대한 적용하였다. 본 연구에서는 기존 연구가 하나 또는 두 개의 모 웨이블릿 평가에 제한된 것과는 달리 총 4가지의 웨이블릿에 대한 비교 평가를 수행하였다. 본 연구에서 선정한 웨이블릿은 기존 연구에 많이 사용된 바 있는 총 4가지의 모 웨이블릿(Bump, Morlet, Paul, Mexican Hat)이다. 그 결과는 다음과 같다. 먼저, Bump 모 웨이블릿을 적용한 결과는 주기성분의 비정상성을 나타내는데 한계가 있는 것으로 확인되었다. 그 결과는 스펙트럼 분석결과와 매우 유사한 수준인 것으로 나타났다. 이에 반해 Morlet과 Paul 모 웨이블릿은 주기성분의 비정상성을 상대적으로 잘 나타내 주는 것으로 확인되었다. 마지막으로 Mexican Hat 모 웨이블릿의 경우에는 그 결과의 해석이 까다로운 것으로 나타났다. 추가로, Paul 모 웨이블릿의 적용 결과가 시계열에 따라 일관적이지 않게 나타날 수 있음도 확인하였다. 결과적으로 Morlet 모 웨이블릿은 본 연구에서 고려한 모 웨이블릿 중 그 적용상 안정성이 가장 높은 것으로 확인되었으며, 이러한 결과는 최근 웨이블릿 관련 연구에서 Morlet 모 웨이블릿이 가장 많이 사용되는 추세와도 일치하는 것이다.

딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화 (Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning)

  • 김명미
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.725-732
    • /
    • 2020
  • 본 논문은 소외계층 아동의 운동학습프로그램에서 체력 활동 중 나를 잘 따른다(0-9), 마음의 결정을 내리는데 많은 시간이 걸린다(0-9), 맥빠진(0-9) 등을 변수로 사용하여 '성별', '체육교실', 나이의 '상중하'를 분류하고 스포츠 재활치료를 통한 자아 탄력(ego-resiliency)과 자아 통제(self-control)의 변화를 관찰하여 정신 건강 변화를 알아본다. 이를 위해 취득한 데이터를 병합하고 Label encoder와 One-hot encoding을 사용하여 숫자의 크고 작음의 특성을 제거한 후 MLP, SVM, Dicesion tree, RNN, LSTM의 각각의 알고리즘을 적용하여 성능을 평가하기 위해 Train, Test 데이터를 75%, 25% 스플릿 한 뒤 Train 데이터로 알고리즘을 학습하고 Test 데이터로 알고리즘의 정확성을 측정한다. 측정 결과 성별에서는 LSTM, 체육 교실은 MLP와 LSTM, 나이는 SVM이 가장 우수한 결과를 보임을 확인하였다.