• 제목/요약/키워드: Long rope

검색결과 46건 처리시간 0.023초

Morphological Control of Periodic Mesoporous Organosilica with Agitation

  • 박성수;이치헌;전종현;조상준;박동호
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.948-952
    • /
    • 2001
  • Periodic mesoporous organosilicas with rope-based morphology from a reaction gel composition of 1 BTME : 0.57 ODTMABr : 2.36 NaOH : 353 H2O were synthesized. While long rope-shaped product dominated in case of static synthesis condition , gyroid type products instead of rope shaped product appeared and rope shaped product disappeared with agitation. PMO with such a long rope shaped morphology is firstly reported. Additionally, various rope-based morphologies depending on the degree of bending, twisting, folding and winding of rope such as spirals, discoids, toroids, and worm-like aggregates were observed. White powdered products were characterized by X-ray diffraction, N2 sorption measurement, SEM and TEM. From XRD pattern and TEM image, ODTMA-PMO with hexagonal symmetry was identified. The pore diameter and BET surface area of ODTMA-PMO are $32.9{\AA}$ and 799 m2g-1 , respectively. Hexagonally arrayed channels run with long axis of rope and rope-based shapes with various degree of curvature, which was elucidated by using TEM images.

동적파라미터 변동을 고려한 윈치 및 부하 운동제어시스템설계에 관한 연구 (A study on winch and load motion control system design considering dynamic parameter variation)

  • 박환철;김영복
    • 수산해양기술연구
    • /
    • 제53권3호
    • /
    • pp.293-301
    • /
    • 2017
  • In this study, a winch and load motion control system design method is introduced. Especially, the winch and load (moving cart) are connected with long wire rope which is extended to few kilometers long. Therefore, the rope length changes such that many dynamic parameter values are changed as well by winding and releasing the rope from the winch system. In this paper, the authors designed the control system by considering the real time parameter variation to occupy and keep good control performance continuously. The effectiveness of introduced method was evaluated by simulation results.

Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

  • Tu, Xi;Wu, Ye;Li, Zhengliang;Wang, Zhisong
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.87-102
    • /
    • 2021
  • Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.

Dynamic Modeling and Observer-based Servomechanism Control of a Towing Rope System

  • Tran, Anh Minh D.;Kim, Young Bok
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.23-30
    • /
    • 2016
  • This paper presents a control-oriented dynamical model of a towing rope system with variable-length. In this system, a winch driven by a motor's torque uses the towing rope to pull a cart. In general, it is a difficult and complicated process to obtain an accurate mathematical model for this system. In particular, if the rope length is varied by operating the winch, the varying rope dynamics needs to be considered, and the key physical parameters need to be re-identified... However, real time parameter identification requires long computation time for the control scheme, and hence undesirable control performance. Therefore, in this article, the rope is modeled as a straight massless segment, with the mass of rope being considered partly with that of the cart, and partly as halfway to the winch. In addition, the changing spring constant and damping constant of the towing rope are accounted for as part of the dynamics of the winch. Finally, a reduced-order observer-based servomechanism controller is designed for the system, and the performance is evaluated by computer simulation.

누설자속 탐상법 및 노이즈 필터를 이용한 와이어로프의 결함진단시스템 개발 (A Development of the Fault Detection System of Wire Rope using Magnetic Flux Leakage Inspection Method and Noise Filter)

  • 이영진;아미나;이권순
    • 전기학회논문지
    • /
    • 제63권3호
    • /
    • pp.418-424
    • /
    • 2014
  • A large number of wire rope has been used in various industries such as cranes and elevators. When wire used for a long time, wire defects occur such as disconnection and wear. It leads to an accident and damage to life and property. To prevent this accident, we proposed a wire rope fault detection system in this paper. We constructed the whole system choosing the leakage fault detection method using hall sensors and the method is simple and easy maintenance characteristics. Fault diagnosis and analysis were available through analog filter and amplification process. The amplified signal is transmitted to the computer through the data acquisition system. This signal could be obtained improved results through the digital filter process.

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

New evaluation of ship mooring with friction effects on mooring rope and cost-benefit estimation to improve port safety

  • Lee, Sang-Won;Sasa, Kenji;Aoki, Shin-ich;Yamamoto, Kazusei;Chen, Chen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.306-320
    • /
    • 2021
  • To ensure safe port operations around the world, it is important to solve mooring problems. In particular, the many ports that face open seas have difficulties with long-period waves. As a countermeasure, the installation of a breakwater is proposed for mooring safety. However, this often cannot be put into practice because of financial issues. Instead, port terminals control berthing schedules with weather forecasting. However, mooring problems remain unsolved, because of inaccurate wave forecasting. To quantify the current situation, numerical simulations are presented with ship motions, fender deflections, and rope tensions. In addition, novel simulations for mooring ropes are proposed considering tension, friction, bending fatigue, and temperature. With this novel simulation, the optimal mooring method in terms of safety and economic efficiency was confirmed. In terms of safety, the optimal mooring method is verified to minimize dangerous mooring situations. Moreover, the optimal mooring method shows economic benefits and efficiency. It can help to reinforce the safety of port terminals and improve the efficiency of port operations.

TightRope®를 이용한 급성 견봉 쇄골 관절 탈구의 치료 : 수술 술기 및 예비 보고 (Coracoclavicular Ligament Augmentation Using TightRope® for Acute Acromioclavicular Joint Dislocation : Surgical Technique and Preliminary Results)

  • 조철현;손승원;강철형;오건명
    • Clinics in Shoulder and Elbow
    • /
    • 제11권2호
    • /
    • pp.165-171
    • /
    • 2008
  • 목적: 급성 견봉 쇄골 관절 탈구에서 TightRope$^{(R)}$를 이용한 수술 술기를 소개하고 유용성 및 예비 결과를 알아보고자 한다. 대상 및 방법: 총 10예를 대상으로 하였으며, 평균 추시 기간은 12.4(8~16)개월이었다. 견봉 쇄골 관절의 내측 1 cm 부위에서 오구돌기 방향으로 4 cm의 피부 절개를 가하여 삼각근을 분리한 후 TightRope$^{(R)}$를 이용하여 오구 쇄골 인대 강화술을 시행하였으며, 술후 안정성을 주기 위해 2개의 1.6 mm K-강선을 이용하여 일시적인 견봉 쇄골 관절 고정술을 시행하였다. 방사선학적 평가는 단순 방사선 사진을 이용하였고, 임상적 평가는 UCLA 평가 점수를 이용하였다. 결과: 방사선학적 평가에서는 해부학적 정복이 7예, 경도의 정복 소실이 2예, 중등도의정복 소실이 1예였다. UCLA 점수는 평균 30.8(24~35)점으로 우수 6예, 양호 3예, 보통 1예였다. 결론: 급성 견봉 쇄골 관절 탈구에서 TightRope$^{(R)}$를 이용한 치료는 최소 침습적이며, 비교적 술기가 간편하고 안정된 고정을 얻을 수 있는 방법으로 생각된다. 그러나 정확한 결과 분석을 위해서는 장기 추시 관찰이 필요할 것으로 사료된다.

섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구 (A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line)

  • 박성민;이승재;강수원
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

안강망어법의 개량과 어장의 원해로의 확대를 위한 연구 - 1 . 어구의 모형실험 - (Study on the Improvement of Stow Net Fishing Technique and the Enlargement of Fishing Ground to the Distant Waters - 1 . Model Experiment of the Net -)

  • 이병기;김진건;이주희
    • 수산해양기술연구
    • /
    • 제24권2호
    • /
    • pp.55-64
    • /
    • 1988
  • 부산시 선적의 근해안강망 어선에서 사용하고 있는 어구의 1/10, 1/20 모형을 제작하여 흐름이 비교적 빠른 연안에서 전개상태를 측정 및 관찰한 결과는 다음과 같다. 1. 전개장치의 전개높이, 전개간극 등은 네갈랫줄의 상대적 길이에 따라 상당히 다르며, 보편적으로 사용하고 있는 바와 같이 네갈랫줄의 길이를 길게 하고, 맨 위쪽 줄의 길이를 그 보다는 짧게한 방식이 효과적이며, 가장 효과적인 것은 갈랫줄의 길이를 아래로부터 차례로 맨 아랫것 보다 5%, 9%, 4%씩 길게 한 것이 전개 높이, 전개간극, 전개면적 등의 모든 면에서 가장 효과적이었다. 2. 흐름이 빨라지면 등판과 밑판의 평면형상은 뜸줄과 발줄이 아주 심하게 만곡되고, 그물 길이의 2/5 정도까지는 망지가 뒤로 많이 쏠려서 망구에 있어서의 물의 여과를 혼란시켜 어군의 입망을 방해할 것 같고, 또 밑판이 해저의 장애물에 걸렸을 때는 파망의 우려가 크다. 3. 유체저항을 실물어구의 것으로 환산하면 R=29.2$\times$103 v1.65 이라고 표현되고, 이것을 그물의 설계상 구성요소를 고려한 식으로 바꾸면 R=5.9$\times$d/l$\times$abv1.65 이라고 표현된다.

  • PDF