• Title/Summary/Keyword: Long cylinder

Search Result 207, Processing Time 0.028 seconds

A Composition and Basis Experiment of Single Cylinder Low Speed Diesel Engine for Atkinson Cycle Materialization (앳킨슨사이클 실현을 위한 단기통 저속 디젤기관의 구성과 기초 실험)

  • Jang, Jtaeik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.461-466
    • /
    • 2013
  • In this research, the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engine to the atkinson cycle, and general cycle features were analyzed after comparing these two cycles. That an experimental single cylinder and a long stroke diesel-atkinson engine, of which S/B ratio was more than 3, were manufactured. After evaluating the engine through basic experiments, a diesel engine was converted into the atkinson cycle by constituent VCR (variable compression ratio) device and VVT (variable valve timing) system. The experimental method was to observe compression work reduction effects due to low compression effects from delayed intake valve closing of the early stage atkinson engine. The result, the possibility of increasing compression ratio about each engine load was confirmation by constructing compensate expansion-compression ratio in accordance with the delayed intake valve close.

Development of a new deposition system for a 12m long YBCO coated conductor (12m 길이의 YBCO 초전도선재 개발을 위한 새로운 증착방법)

  • Lee, Byoung-Su;Kim, Ho-Sup;Youm, Do-Jun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.319-321
    • /
    • 1999
  • To solve the problems in the present ree1-to-reel deposition method, we have developed a new deposition system for a 12m long YBCO coated conductor. The system comprises two chambers, a reaction chamber and a evaporation chamber which are connected through window. A tan long fi tape textured by RABiTS was wound around a cylinderical sample holder of 20cm diameter. The cylinder was rotated in the reaction chamber during deposition of YBCO film by coevaporation. We'll describe the details of the performance of this system as well as the RABiTS process for a 12m long Ni tape.

  • PDF

A Study on Main Engine X-mode Vibration Phenomenon due to 2nd Node Torsional Vibration of the Marine Propulsion System (선박 추진축계의 2절 비틀림진동에 기인한 주기관 X-모드 진동 현상의 연구)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.806-813
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to 2nd node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the 2nd node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-flex82T 8 cylinder engine and 11S90ME-C 11 cylinder engine for a container ship was used as research model.

NUMERICAL ANALYSIS ON INTERNAL FLOW OF OIL JET COOLING THE PISTON (피스톤 냉각용 Oil jet 유동해석)

  • Kwon J.H.;Jung H.Y.;Lee J.H.;Choi Y.H.;Lee Y.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.219-222
    • /
    • 2005
  • Recently, the interest of the engine capacity and environment of the atmosphere is increasing, so the researches for the engine capacity have been conducted for a long time. But the internal environment of an automotive engine is very severe. A piston is exposed to combustion gas of over $2000^{\circ}C$ and strong friction is occurred by high speed motion in the cylinder. The fraction between piston and wall of the cylinder causes the increase of temperature in the engine. The temperature of the engine has an effect on the engine capacity. If the temperature is high, the capacity of the engine is low. So we have to maintain the optimum temperature. To maintain the optimum temperature, the enough flow rate of the engine oil is needed. The oil jet is used to control the flow rate of the engine oil and supply the engine oil to the piston and cylinder. The purpose of this study is to check the mass flow rate of the engine oil and the characteristics of internal flow of the oil jet. Flow pattern of the engine oil is very important because it concludes the loss in the oil jet. This study is the previous research about the oil jet and we will consider the movement of the ball check valve to get more accuracy result.

  • PDF

Effects on the Gamma Rays Scattered Backward by the Gold Cylinder on the Nuclear Energy Level (실린더 금속판에 의해 뒤쪽산란된 감마선이 핵에너지 준위에 미치는 효과)

  • Jeong, M.T.;Chol, N.G.;Cheoun, M.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.103-107
    • /
    • 2007
  • When the gamma-ray source, $^{133}Cs$, embedded in a solid is placed at the center of a gold cylinder, the width of 81 keV level is shown to become narrower. This result implies a prolongation of the lifetime of that energy level. With a 0.5-mm-thick, 5-cm-long, 2-mm-diameter platinum cylinder, we obtain a width narrower by 6.1 % at 4.2 K.

Some Considerations of the Ignition Delay Period in D.I Diesel Engine (직접분사식 디젤기관의 착화지연기간에 대한 고찰)

  • Bang, Joong-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • The four combustion stages in a diesel engine have close correlation among them. Especially, the ignition delay period has significant effect on the following combustion stage. And the period is also one of inevitable combustion processes in the diesel engine. For example, the diesel knocking is a well-known phenomenon due to the long ignition delay period. The interval of the ignition delay period is affected by the mixture formation process in the cylinder. However, in the case of the D.I. diesel engine, the available duration to make the mixture formation of air-fuel is very short. In addition, the means of the mixture formation mainly depends on the injection characteristics and properties of the fuel. It is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this study, using the visible engine, we measured the ignition delay period by photo sensor which detect occurrence of flame and presented the factors of the injection characteristics such as kinds of injection system, the injection pressure and the injection timing. The relation between the ignition delay period and cylinder pressure diagram which was concurrently obtained was also estimated.

Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System (선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump (파워스티어링용 유압펌프의 일체형 풀리 개발)

  • Lee, C.T.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

Free Convection due to Vertical Isothermal Wires Immersed in Water near its Density Extremum (최대밀도점 부근의 물 속에 잠겨있는 수직 등온 강선에 의한 자연대류)

  • Eom, Y.K.;Riu, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.338-350
    • /
    • 1996
  • A numerical analysis is carried out to study the two-dimensional steady state natural convection from vertical wires immersed in cold pure water. The surface of the wire is $0^{\circ}C$ unifrom temperature. Results of the analysis are presented for free stream temperature from $0^{\circ}C$ to $25^{\circ}C$ and the aspect ratio N from $5.26{\times}10^{-3}$ to $1.0{\times}10^{-3}$. The effects of the density extremum and aspect ratio on the flow pattern and the heat transfer characteristics are discussed As the aspect ratio N becomes larger, in the range of $1.0^{\circ}C{\leq}T_{\infty}{\leq}4.4^{\circ}C$ and $6{^{\circ}C}{\leq}T_{\infty}{\leq}17^{\circ}C$, the effect of Pr number on the heat transfer is shown to be more significant than the aspect ratio. Investigating into the effect of the density extremum on the heat transfer from wires, the new heat transfer correlations are suggested with the relation of average Nu mumber vs. modified Ra number. Here, the coefficient values C of correlations are presented as the function of density extremum parameter $R^*$. The effects of the density extremum parameter are also discussed.

  • PDF

Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석)

  • Dae Kyung Noh;Dong Won Lee;Jae Yong Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.