• Title/Summary/Keyword: Long Surface Crack

Search Result 105, Processing Time 0.031 seconds

장시간 사용된 가스터빈 블레이드의 저주기피로 손상도 평가 (Evaluation of Low Cycle Fatigue Damage of Gas Turbine Blades Used for a Long Time)

  • 허인강;김재훈
    • 한국안전학회지
    • /
    • 제33권3호
    • /
    • pp.8-14
    • /
    • 2018
  • Ni-base superalloy has excellent resistance to extreme environments such as high temperatures and high stresses and are used as materials for large gas turbines. In this paper, the specimens were taken from the blade that were used for a long time, and their life span was studied by microstructure analysis and avoidance of cursing. The microstructural analysis of the specimens was carried out using a OM and SEM to observe the coarsening, carbides on gamma prime. Low-cycle fatigue tests were performed on new material and airfoil of long time-used blade. The test was conducted under various deformation conditions and temperature conditions of $760^{\circ}C$ and $870^{\circ}C$. The low cycle fatigue test was carried out using the Coffin-Manson equation and the fatigue life was predicted. After the test, crack path and fracture surface were analyzed using SEM.

Time-dependent bond transfer length under pure tension in one way slabs

  • Vakhshouri, Behnam
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.301-312
    • /
    • 2016
  • In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.

연속 슬롯-다이 코팅 및 하소공정을 이용한 MOD-YBCO 초전도 선재 제조 (Continuous Slot-die coating & Calcination process for long length MOD-YBCO coated conductors)

  • 정국채;유재무;고재웅;김영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.14-17
    • /
    • 2007
  • The slot-die coating & calcination process was adopted to fabricate the long YBCO precursor films on the buffered metal tape for the $2^{nd}$ generation coated conductors. To obtain the smooth and crack-free surface of long YBCO precursor films, the parameters of slot-die coating and the process variables of calcination step must be optimized simultaneously in reel-to-reel method. Among the parameter of slot-die coating process, the viscosities of the precursor solution was controlled from 60cP to 200cP to obtain the thicker films from on single coating. The slot-die gap, the injection rate of precursor solution, the moving speed of buffered metal tape etc. are controlled lot the full coverage and smooth surface of YBCO precursor films. The slot-die coated films are moved through the tube furnace with predetermined heating profiles in humid oxygen ambient The YBCO precursor films was identifed with $Y_2O_3,\;BaF_2$, and CuO phase by XRD and consisted of fine grains of about 20nm size observed by FE-SEM. The YBCO films show the critical current density over $MA/cm^2$ using the precursor films formed by the continuous slot-die coating & calcination process.

컴플라이언스법에 의한 다층 맞대기 이음의 잔류응력 추정 (Residual Stress Prediction in Multi-layer Butt Weld Using Crack Compliance Method)

  • 김유일;이장현
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.74-79
    • /
    • 2012
  • It depends on the joint configuration, dimensions and constraints of the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of welded joint in order to prevent excessively long life caused by compressive residual stress. In this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial term. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface is positive valued, however, it turned into the negative value as soon as it passed through 2 or 3 mm of the depth.

신ㆍ구 콘크리트의 접합면 조건에 다른 부착특성 (Bond characteristics by joint condition between old and. new concrete)

  • 주봉철;김영진;김병석;박성룡;김덕진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.859-864
    • /
    • 2003
  • In these days, the deterioration of bridges make it necessary for decks to be replaced and it is inevitable to apply the precast decks to minimize the traffic control induced from the deck placement. This precast deck construction makes the physically discontinuous interface between old and new concrete. Usually, the adhesive force at this interface are ignored. However, for crack behavior and reliable long term behavior, it is required to evaluate the exact value of the cohesive force at the interface. This research investigates the cohesive characteristics at the interface. Four different interface surface conditions are tested and three different methods are used to measure the cohesive strength at the interface. In addition, cohesive characteristic at the surface between precast panels are investigated with different interface surface conditions.

  • PDF

2 1/4 Cr-1 Mo강 劣化材의 微小 疲勞龜裂의 발생 및 진전거동 (Initiation and Growth Behavior of Small Fatigue Cracks in the Degraded 2 1/4 Cr-1 Mo Steel)

  • 곽상국;장재영;권재도;최선호;장순식
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.53-62
    • /
    • 1992
  • 본 연구에서는 약 10년 정도 사용하여 경년 열화가 되었다고 예상되는 실구조 물의 일부를 입수하였으며 열화재의 특성과 비교하기 위하여 열처리에 의해 충격치를 회복시킨 재료를 회복재로 하여 두가지 재료에 대해 시험편을 제작하였따.열확현상 을 파악하기 위하여 평활재로 피로과정, 즉 미소 균열의 발생, 진전 및 복수 균열이 간섭합체하여 파단에 달하는 과정에 대하여 파괴역학적 견지에서 열화재와 회복재를 해석하고 이결과로 부터 확율변수를 추정하여 통계학적인 수명예측방법의 하나를 제시 하여 실구조물에 적용하는 방법에 대해 시도해 보았다.

표면도장공법에 의한 균열부 콘크리트의 염소이온 침투제어 특성 (The Effect of Surface Treatment Systems on Chloride Penetration in Cracked Concrete)

  • 채규봉;윤인석;이창수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.525-528
    • /
    • 2008
  • 건전하게 시공된 콘크리트는 충분한 내구성으로 장기수명을 갖는 것으로 알려졌다. 그러나 대다수의 콘크리트 표면에 존재하는 균열은 염소이온의 침투에 대한 빠른 침투 통로가 되어 내구성능을 저하시키는 것은 분명하다. 균열이 발생한 콘크리트의 수명을 연장하기 위한 중요한 사항은 염소이온으로 인한 부식의 위험성을 재고하는 것이다. 균열폭은 높은 철근비로 감소시킬 수 있으나, 실질적으로 균열이 발생한 콘크리트의 내구성 저하이다. 이처럼 균열폭이 작은 경우, 표면도장공법은 균열이 발생한 콘크리트의 내구성을 간단히 향상시킬 수 있는 하나의 방안으로 고려될 수 있다. 따라서, 다양한 표면도장공법이 균열이 발생한 콘크리트를 실링할 수 있는지에 대한 검토가 필요하다. 본 연구는 이와 같이 표면도포공법이 미세균열을 통한 염소이온 침투에 미치는 영향을 실험적 측면에서 고찰하고자 하였다. 실험변수로 침투재와 도포재의 단일 적용과 복합적용이 실험변수로 고려되었으며, 급속염소이온 침투 실험을 통하여 균열대비 염소이온 침투깊이를 검토하였다.

  • PDF

3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측 (Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method)

  • 김현욱;남정희;최지영
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.

독립형 LNG 화물창의 공학적 결함 평가 (Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank)

  • 서재훈;박규식;차인환;정준모
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.