• 제목/요약/키워드: Long Range Wireless

검색결과 114건 처리시간 0.025초

장거리 무선전력전송 기술동향 (Technical Trend of Long-range Wireless Power Transfer)

  • 정영배
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.216-222
    • /
    • 2018
  • 장거리 무선전력전송 기술은 단순한 핸드폰 및 소형가전을 넘어서, 4차 산업혁명의 핵심기술로 자리 잡은 드론, 로봇, 전기자동차, IoT 센서 네트워크 등에 폭넓게 적용될 수 있다. 본 논문에서는 이미 기술적으로 보편화된 기존의 근거리 무선전력전송 기술을 벗어나, 급속한 기술발전으로 통하여 상용화 단계에 이른 장거리 무선전력전송 기술의 발전방향을 살펴보고자 한다. 이를 통하여, 핵심기술을 파악과 기술적인 극복과제를 도출함으로써 국내의 연구수준과 나아갈 바를 점검하고자 한다.

Beam Efficiency of Wireless Power Transmission via Radio Waves from Short Range to Long Range

  • Shinohara, Naoki
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.224-230
    • /
    • 2010
  • Wireless power transmission (WPT) is useful technology in near future. There are some kinds of the WPT technologies, WPT via radio waves, resonance coupling, and inductive. Especially the WPT via radio waves is used for multi-purposes from short range to long range application. However, unfortunately it is misunderstood that it is low efficiency and low power. In this paper, I show the theory of beam efficiency between transmitting antennas and receiving antennas and also show some high efficient applications of the WPT via radio waves. Especially, I pick up a wireless power charging system of an electric vehicle and show the experimental results. I show difference between the theory of beam efficiency and the experimental results of short range WPT. I indicate that reasons of poor beam efficiency in the experiment are (1) change of impedance caused by mutual coupling between transmitting antennas and receiving antennas, (2) oblique direction of microwave power to receiving antennas caused by short distance.

무인수상정 해상무선통신 거리 적응적 동기화 설계 및 구현 (A Design and Implementation of Range Adaptive Time Synchronization on USV Maritime Wireless Communication)

  • 박현성;김태현;곽상열;노우영;오지명
    • 한국군사과학기술학회지
    • /
    • 제21권5호
    • /
    • pp.640-648
    • /
    • 2018
  • Time division wireless communication in tactical MANET is attractive to deliver both high data rates and long-range coverage, and to provide scheduled QoS to mission participants. This paper is about the time synchronization issue of multi-mission USV in tactical MANET. As USV communication coverage becomes longer, the synchronization error also becomes higher; therefore, which results in link disconnection, and consequent failures of reconnection because base station cannot configure necessary parameters over long-distant terminal. We propose a range adaptive time synchronization method to compensate for synchronization errors. The issue of long-range time synchronization problem was identified during maritime communication tests, and we verified the proposed method through analyses of both indoor and outdoor test results.

효율적인 원거리 데이터 전송을 위한 Zigbee 노드들의 그룹화 알고리즘 (Grouping Algorithms of Zigbee Nodes for Efficient Data Transmission to Long Range)

  • 우성제;신복덕
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.632-638
    • /
    • 2012
  • ZigBee network, based on PHY, MAC layer provides a specification for a suite of high level communication protocols using small, low-power digital radio based on an IEEE 802.15.4 standard. Meshing is a type of daisy chaining from one device to another. This technique allows the short range of an individual node to be expanded and multiplied, covering a much larger area. Each wireless technology that makes it to market serves a special purpose or function. Zigbee provides short-range connectivity in what is called a personal-area network (PAN). Within ZigBee PAN coordinator as manages an entire ZigBee network, the short range of frequency band was only selected because the technology allows typically less than 100 kbp or ZigBee troubles in retransmission processing and delaying data tranmission works to create unproductive condition of work. This research was proposed the method, based on short range frequency of zigBee nodes enable to long range of remote data transmission with specific algorithm tools.

Gateway Channel Hopping to Improve Transmission Efficiency in Long-range IoT Networks

  • Kim, Dae-Young;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1599-1610
    • /
    • 2019
  • Intelligent services have expanded as Internet of Things (IoT) technology has evolved and new requirements emerge to accommodate various services. One new requirement is transmitting data over long distances with low-power. Researchers have developed low power wide area (LPWA) network technology to satisfy the requirement; this can improve IoT network infrastructure and increase the range of services. However, network coverage expansion causes several problems. The traffic load is concentrated at a specific gateway, which causes network congestion and leads to decreased transmission efficiency. Therefore, the approach proposed in this paper attempts to recognize and then avoid congestion through gateway channel hopping. The LPWA network employs multiple channels, so wireless channel hopping is available in a gateway. Devices that are not delay sensitive wait for the gateway to reappear on their wireless channel; delay sensitive devices change the wireless channel along the hopping gateway. Thus, the traffic load and congestion in each wireless channel can be reduced improving transmission efficiency. The proposed approach's performance is evaluated by computer simulation and verified in terms of transmission efficiency.

Long range-based low-power wireless sensor node

  • Komal Devi;Rita Mahajan;Deepak Bagai
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.570-580
    • /
    • 2023
  • Sensor nodes are the most significant part of a wireless sensor network that offers a powerful combination of sensing, processing, and communication. One major challenge while designing a sensor node is power consumption, as sensor nodes are generally battery-operated. In this study, we proposed the design of a low-power, long range-based wireless sensor node with flexibility, a compact size, and energy efficiency. Furthermore, we improved power performance by adopting an efficient hardware design and proper component selection. The Nano Power Timer Integrated Circuit is used for power management, as it consumes nanoamps of current, resulting in improved battery life. The proposed design achieves an off-time current of 38.17309 nA, which is tiny compared with the design discussed in the existing literature. Battery life is estimated for spreading factors (SFs), ranging from SF7 to SF12. The achieved battery life is 2.54 years for SF12 and 3.94 years for SF7. We present the analysis of current consumption and battery life. Sensor data, received signal strength indicator, and signal-to-noise ratio are visualized using the ThingSpeak network.

특허분석을 통한 무선충전 기술방향 분석 (Research on the Development Direction of Wireless Charging Technology Using Patent Analysis)

  • 양동원;이행병
    • 한국IT서비스학회지
    • /
    • 제19권3호
    • /
    • pp.89-100
    • /
    • 2020
  • The wireless power transmission market is growing at an average annual rate of 51.5% from $ 16.4 billion in 2015 to $ 131.1 billion in 2020. However, there are limitations to commercialization due to the development of standards and technologies. Thus, this study identified trends in standards and regulations by market and by country. The research collected and filtered a total of 69,488 worldwide wireless power transfer patents by June 2019 and extracted a total of 28,555 patents. Based on this, technology development status was analyzed and predicted. In this study, long-distance and short-range technology development with high technology development difficulty and low technology development ratio could lead to growth of the entire wireless charging market. It is analyzed that investment and policy preparation are necessary to secure source technology for long-distance / near technology development than China, Japan and Europe.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.