• Title/Summary/Keyword: Long Railway Tunnel

Search Result 72, Processing Time 0.026 seconds

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

Experimental study of Internal pressure variation of the TTX traveling in conventional tunnels (틸팅 열차의 터널주행 시 실내 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Lee, Young-Bin;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2114-2119
    • /
    • 2008
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear nose each other. Because the compression wave and expansion wave have interactions with the train in a tunnel repeatedly, the internal pressure of the train is dramatically varied. And this pressure variation gives passengers discomfort like ear-ache. In this paper, we had measured the internal pressure variation of TTX developed and being on Test-Running in Honam line and made an analysis of pressure variation rate. As a result, the internal pressure variation was different as to the length of tunnel. Though the entering velocity of TTX is similar on test tunnels, on the short tunnel, the pressure drop was lower then that of the long tunnel. And it was expected that the rates of internal pressure variation would be exceeded the limits on 160km/h entering velocity.

  • PDF

Impacts of wind shielding effects of bridge tower on railway vehicle running performance

  • Wu, Mengxue;Li, Yongle;Zhang, Wei
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • When railway vehicles run by towers of long span bridges, the railway vehicles might experience a sudden load-off and load-on phenomenon in crosswind conditions. To ensure the running safety of the railway vehicles and the running comfort of the passengers, some studies were carried out to investigate the impacts of sudden changes of aerodynamic loads on moving railway vehicles. In the present study, the aerodynamic coefficients which were measured in wind tunnel tests using a moving train model are converted into the aerodynamic coefficients in the actual scale. The three-component aerodynamic loads are calculated based on the aerodynamic coefficients with consideration of the vehicle movement. A three-dimensional railway vehicle model is set up using the multibody dynamic theory, and the aerodynamic loads are treated as the inputs of excitation varied with time for kinetic simulations of the railway vehicle. Thus the dynamic responses of the railway vehicle passing by the bridge tower can be obtained from the kinetic simulations in the time domain. The effects of the mean wind speeds and the rail track positions on the running performance of the railway vehicle are discussed. The three-component aerodynamic loads on the railway vehicle are found to experience significant sudden changes when the vehicle passes by the bridge tower. Correspondingly, such sudden changes of aerodynamic loads have a large impact on the dynamic performance of the running railway vehicle. The dynamic responses of the railway vehicle have great fluctuations and significant sudden changes, which is adverse to the running safety and comfort of the railway vehicle passing by the bridge tower in crosswind conditions.

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

Development of 1-3 Dimensional Hybrid Mesh Method for Flow Analysis of the Ultra-High Speed Vehicle Inside a Long Distance Tunnel (장거리 터널 내 고속 운송체의 유동 해석을 위한 1-3차원 혼합격자 기법개발)

  • Choi, Joong-Keun;Kim, Tae-Kyung;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.119-127
    • /
    • 2011
  • This paper shows development of 1-3 dimensional hybrid mesh method to analysis flow induced by ultra-high speed vehicle inside a long distance tunnel. For three-dimensional analysis of the tunnel system many meshes are required. However it is not efficient to calculate the whole tunnel system in three-dimension. Therefore in this paper, three-dimension meshes was used to describe stations, shafts and around vehicle, and one-dimension meshes was used to describe the tunnel except these three sections. And unsteady flow analysis of the ultra-high speed vehicle was performed with UDFs in commercial software, Ansys vr. 12.0.

  • PDF

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

the case study of installation for the safety of railroad tunnel (철도터널 안전설비 설치 사례 연구)

  • Kim Sun-hong;Kim Dong-Ki;Nam Myong-sik;Jo Hyeong-je;Kim Jong-won
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.640-645
    • /
    • 2005
  • Safety requirment or guidance have been developing for a long time in the UIC, Germany, France, and Japan etc. Also, In Korea, the Ministry Construction & Transportation make an progress about this issue, document, called 'railroad tunnel safety standards 6th draft', was developed. In this paper, we'll show standard of other country and compare with Korea draft. next, we'll show some kind of railroad safety facility and installations and explain a relationship of safety issue and standards

  • PDF

Study of Standard Design Fire Curve of Various Railcar (철도차량별 표준 설계화재곡선 연구)

  • Lee, Duck-Hee;Park, Won-Hee;Jung, Woo-Sung;Kim, Chi-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1426-1431
    • /
    • 2011
  • A study on the standardization of design fire HRR(heat release rate) curve was conducted for various railcar from the fire simulation or the fire tests. These standard curves are listed on the tunnel fire safety manual which will be used for the QRA(quantitative risk analysis) process of the long railway tunnels. The design fire curve is based with four simple factor representing the key of fire curve characteristics. Flashover time, maximum HRR and burn out time are the key factors of the design fire curve. Specially total heat release is decided by the burnable material amount in the car.

  • PDF

Experimental Study on the Designed Ventilation System Performance at Rescue Station in Tunnel Fire (터널 내 화재발생시 구난역 내의 설계된 환기 시스템 성능에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • In this study, the l/35 reduced-scale model experiment were conducted to investigate designed ventilation system performance at rescue station in tunnel fire. A model tunnel with 2 mm thick of steel, 10 m long, 0.19 m high and 0.26m was made by using Froude number scaling law. The cross-passages installing escape door at the center. were connected between accident tunnel and rescue tunnel. The n-heptane pool fire, $4cm\times4cm$, with heat release rate 698.97W were used as fire source. The fire source was located in the center and portal of accident tunnel as Worst case.. An operating ventilation system extracted smoke amount of 0.015 cms. The smoke temperature and carbon monoxide. concentration in cross-passage were measured to verify designed ventilation system. The results showed that, in center fire case without ventilation in accident tunnel, smoke did not propagated to rescue station. In portal tire case, smoke spreaded to rescue station without ventilation. But smoke did not propagated to rescue station with designed ventilation.

A Study on the Reasonable Application Method of Steel Fiber Reinforced Shotcrete in NATM Tunnel (NATM 터널에서 합리적인 강섬유보강 숏크리트 적용방안에 관한 연구)

  • Seok, Chongken;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.19-28
    • /
    • 2014
  • Recently, the proportion of long tunnel has increased for efficient use of land due to limited land area, driving convenience and high speed. RMR and Q-System of empirical methods has been mainly used for tunnel support design in domestic. Although shotcrete is the key to NATM tunnel, the related studies are insufficient. So, steel fiber reinforced shotcrete is applied to II~V grade rocks on domestic and foreign applications. And same amount of shotcrete is equally applied to tunnel roof and wall regardless of the applied rock load. Shotcrete is applied excessively rather than the original proposed value of RMR and Q-System. Thus, this study is to reevaluate the application part of plain shotcrete and steel fiber reinforced shotcrete of tunnel in Daebo granite, and to propose the reasonable application method of steel fiber reinforced shotcrete. Field test and numerical back analysis using measurements were performed to verify stability. According to results, if RMR values are the upper class in the III grade, it can be designed in accordance with upper grade. In addition, if rock condition is good as a mountain tunnel in Daebo granite, it can be applied for plain shotcrete to III grade rocks because there is also no stability problems. And although steel fiber reinforced shotcrete is applied only crown of the tunnel in IV grade rocks, it is possible to secure stability for falling rock by key-block.