• 제목/요약/키워드: Long Fiber

검색결과 1,011건 처리시간 0.026초

Applications of fiber optic sensors in civil engineering

  • Deng, Lu;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.577-596
    • /
    • 2007
  • Recent development of fiber optic sensor technology has provided an excellent choice for civil engineers for performance monitoring of civil infrastructures. Fiber optic sensors have the advantages of small dimensions, good resolution and accuracy, as well as excellent ability to transmit signal at long distances. They are also immune to electromagnetic and radio frequency interference and may incorporate a series of interrogated sensors multiplexed along a single fiber. These advantages make fiber optic sensors a better method than traditional damage detection methods and devices to some extent. This paper provides a review of recent developments in fiber optic sensor technology as well as some applications of fiber optic sensors to the performance monitoring of civil infrastructures such as buildings, bridges, pavements, dams, pipelines, tunnels, piles, etc. Existing problems of fiber optic sensors with their applications to civil structural performance monitoring are also discussed.

중공 광섬유를 이용한 광섬유 간섭계형 온도센서 (Fiber-optic interferometric temperature sensor using a hollow fiber)

  • 박재희;김광택
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.192-196
    • /
    • 2007
  • A fiber-optic interferometric temperature sensor is fabricated using a hollow optical fiber with 8 um air hole. This interferometric sensor for measuring temperature consists of 13 mm long hollow optical fiber whose one end is attached to the single mode fiber and the other end is cleaved. After the sensor is put in a furnace, the phase change of the sensor output signal is measured as the temperature of the furnace increases from $28^{\circ}C$ to $100^{\circ}C$. The phase change of the fiber sensor is proportional to the change of temperature and the relationship between the change of phase and temperature is approximately linear. The sensitivity of this sensor is $2.7{\;}radians/^{\circ}C$.

FPF(Fibrillated Polypropylene Fiber)보강 성토재료의 강도 특성에 관한 연구 (Characteristics of Soils Reinforced by FPF(Fibrillated Polypropylene Fiber))

  • 김낙경;박종식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.433-440
    • /
    • 2001
  • This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.

  • PDF

초고강도 강섬유 보강 콘크리트의 휨특성에 관한 연구 (A Study on the flexural Behavior of Ultra-Strength Steel Fiber Reinforced Concrete)

  • 류금성;박정준;강수태;고경택;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.333-336
    • /
    • 2005
  • This paper presents a comparative evaluation of eight different types of steel fibers used as reinforcing material in concrete beams. The fibers which used ultra-strength steel fiber reinforced concrete were fiber length of 30 to 60mm, aspect ratio of 43 to 86, W/B ratio 0.16 to 0.30, fiber types of both ends hooked and straight shape and fiber volume fraction of 1 to 5$\%$. As for the test results, it estimated the influence of fiber volume, length and aspect ratio on the mechanical properties of high toughness concrete, the mechanical properties improved according to increase fiber volume, to increase aspect ratio and to long fiber length. And the resonable fiber volume in high toughness concrete was analyzed 2$\%$ based on the results of mechanical properties.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

유·무기 섬유를 복합사용한 HPFRCC의 공학적 특성 (Engineering Properties of HPFRCC Including Both Organic and Inoranic Fibers)

  • 이종태;한천구
    • 한국건축시공학회지
    • /
    • 제15권6호
    • /
    • pp.615-620
    • /
    • 2015
  • 고성능 시멘트 복합재료(HPFRCC)는 인장력 작용 하에 있어서 초기 균열이 발생한 이후에도 변형의 증가와 함께 응력이 증가하는 변형경화 특성과 다수의 미세 균열이 발생함으로써 균열 폭 제어 특성을 나타낸다. 그러나 국내의 HPFRCC의 연구는 단일섬유를 중심으로한 제조방법이나 경화전후의 재료적 성상에 관한 연구들이 진행되어지고 있으나 복합섬유인 HPFRCC를 실무에서 활용하기 위한 연구는 미미한 실정이다. 따라서 본 연구에서는 시공성 및 경제성을 고려하여 실무에서 효율적인 활용성을 검토하기 위한 방안으로 강섬유(이하 SL)와 유기섬유(이하 OL)를 조합한 복합섬유로 유동성 및 강도 등 제반 공학적 특성을 검토하고자 한다. 결과적으로 강섬유 장섬유(SL)과 유기섬유 장섬유(OL)의 복합섬유를 활용하는 HPFRCC의 제반 공학적 성능을 검토한 결과 복합섬유 혼입율 1.5%일 때 가장 우수한 것으로 판단되었다.

The Effect of Consistency and Crowding Number on the Formation of Paper Made of Different Pulp Stocks

  • Lee, Hak-Lae;Youn, Hye-Jung;Lee, Sang-Gil;Jeong, Young-Bin
    • 펄프종이기술
    • /
    • 제39권5호
    • /
    • pp.1-6
    • /
    • 2007
  • Formation which is one of the most fundamental characteristic of paper quality is affected by a number of variables. Fiber flocculation in the headbox has been recognized as the most important variable influencing formation. Consistency and crowding number of head box stock are known to represent the flocculation potential of stocks. The effects of consistency and crowding number on paper formation were studied by measuring the flocculation of fiber suspensions. Increasing consistency increased the degree of fiber flocculation. Especially the consistency of long fiber fraction was the most crucial factor of flocculation. Tensile strength of handsheets was furnish dependent rather than flocculation dependent. Crowding number of a furnish can be used for the characterization of stock flocculation.

전통한지의 처리공정에 따른 물성변화 (Effect of Traditional Hanji Manufacturing Process on Its Physical Properties)

  • 서영범;최찬호;전양
    • 펄프종이기술
    • /
    • 제33권4호
    • /
    • pp.28-34
    • /
    • 2001
  • Korea traditional handmade paper, Hanji, has been known for more than thousand years for its high strength, high whiteness, high gloss, good ink reception and long lasting quality. Main component fiber of the Hanji is called 'Dak', which is the bast fiber of the Korea paper mulberry ($\textit{Broussonetia kazinoki}$). Dak has long fiber length, and high cellulose DP, if processed properly. The quality of Hanji is partly from the superior quality of Dak over wood fiber, and partly from the traditional papermaking process. The traditional papermaking process includes pulping, bleaching, refining, use of natural polymer, and sheet making process. Every traditional process has its special role. Comparisons between the modern papermaking technology and the traditional process were made in this study. The traditional process effectively protected cellulose DP in pulping and bleaching process, protected fiber length in refining process, and developed the high strength in the sheet forming process over the modern papermaking process.

  • PDF

Flexural Characteristics of Coir Fiber Reinforced Cementitious Composites

  • Li Zhi-Jian;Wang Li-Jing;Wang Xungai
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.286-294
    • /
    • 2006
  • This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1% NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites' flexural properties were examined. The results showed that the CFRCC samples were 5-12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Add/drop Filter for CWDM Systems Using Side-coupled Long-period Fiber Gratings

  • Chan Florence Y. M.;Kim Myoung Jin;Lee Byeong Ha
    • Journal of the Optical Society of Korea
    • /
    • 제9권4호
    • /
    • pp.135-139
    • /
    • 2005
  • We demonstrate a simple and effective wavelength-tunable add/drop filter suitable for coarse wavelength division multiplexing (CWDM) systems. The filter consists of two fibers in contact side by side, with identical long-period fiber gratings (LPG) in each fiber. The LPG couples the power in the fundamental core mode to one of the cladding modes, which is then coupled to the same order cladding mode in the other fiber through evanescent-field coupling between two fibers. Finally, the cladding mode in the second fiber is coupled to its core mode with the help of the other LPG. With an optimal longitudinal offset distance of 10 em, coupling efficiency as high as -1.68 dB and side lobes smaller than -24 dB were experimentally obtained. The experimental results agreed well with the theoretical ones. The operating wavelength of the proposed add/drop filter was tunable by varying the temperature. The temperature sensitivity was measured to be -0.43 nm/$^{\circ}C$.