• Title/Summary/Keyword: Long Endurance

Search Result 201, Processing Time 0.024 seconds

Computational Analysis of the Aerodynamic Performance of a Long-Endurance UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.374-382
    • /
    • 2014
  • This paper presents the computational aerodynamic analysis of a long-endurance UAV that was developed by the Korea Aerospace Research Institute (KARI), named EAV-2. EAV-2 is a technical demonstrator of aerodynamically efficient design, as well as a hybrid electric-propulsion system for future long-endurance UAVs. We evaluated the aerodynamic characteristics of six low-Reynolds number airfoils, using a panel method code, XFOIL, to select an optimal airfoil for the long-endurance mission of EAV-2. The computational results by a CFD code, FLUENT, suggested that the aerodynamic performance of EAV-2 would be notably improved after adopting SG6043 airfoil, and modifying the fuselage design. This reduced the total drag by 43%, compared to that of a previous KARI model, EAV-1, at the target lift of $C_L=1.0$. Also, we achieved a drag reduction of approximately 14% by means of the low-drag fuselage configuration.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

The Effect of Long-term Endurance training and Antioxidant Combined Vitamin Supplementation on blood Antioxidant Enzymes Activity, Lipid Peroxidation and Lipoprotein metabolism (장기간의 지구성 훈련시 항산화 Vitamin 복합 투여가 혈중 항산화 효소 활성도, 지질 과산화 및 지단백 대사에 미치는 영향)

  • Kim Yoo-Sub
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.100-118
    • /
    • 2002
  • This study was to investigate the effect of long-term high intensity endurance training on the activation of antioxidation enzyme activity, lipid peroxidation and lipoprotein metabolism. 15 subjects were divided into, endurance exercise + antioxidation Vitamin supplement(n=5), endurance exercise(n=5), and the control(n=5) groups. The endurance exercise groups(endurance exercise + antioxidation Vitamin supplement and endurance exercise) had 12 week of endurance exercise program. The antioxidation Vitamin supplement group was taken a Vitamin C tablet with 1000mg/day and Vitamin E tablet with 671.14mg/day right after lunch. The results obtained from this study were as follows; 1. Looking at the changes of SOD, Endurance exercise+antioxidation Vitamin supplement group and endurance exercise groups showed the significantly greater decrease in the activation of SOD after 12 weeks of all-out exercise. 2. Looking at the changes of CAT, Endurance exercise+antioxidation Vitamin supplement group revealed subjects tended to increase CAT after all-out exercise although statistically non-significant. Endurance exercise+antioxidation Vitamin supplement group showed the significantly greater increase in the activation of CAT after 12 weeks treatment for all-out exercise. 3. Looking at the changes of GPX, Endurance exercise+antioxidation Vitamin supplement group revealed subjects tended to increase GPX for the rest and after all-out exercise although statistically non-significant. Endurance exercise+antioxidation Vitamin supplement group showed the significantly greater increase in the activation of GPX after 12 weeks treatment for all-out exercise. 4. The MDA change showed the significant decrease after 6 weeks, after 12 weeks for the all-out exercise of Endurance exercise + antioxidation Vitamin supplement group. 5. There was non-significant change in lipoprotein metabolism for the rest and after all-out exercise.

  • PDF

A prototype to improve endurance of solar powered aircraft using MPPT and rechargeable battery

  • Leo Paul Amuthan George;Anju Anna Jacob
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • This paper addresses the enhancement of long-endurance solar-powered aircraft through the integration of a rechargeable battery and Maximum Power Point Tracking (MPPT) controller. Traditional long-endurance aircraft often rely on non-renewable energy sourcessuch as batteries orjetfuel, contributing to carbon emissions. The proposed system aims to mitigate these environmental impacts by harnessing solar energy and efficiently managing its storage and utilization. The MPPT controller optimizes the power output of photovoltaic cells, enabling simultaneous charging and discharging of the battery for propulsion and servo control. A prototype is presented to illustrate the practical implementation and functionality of the proposed design, marking a promising step towards more sustainable and enduring solar-powered flight.

Wing Design Optimization for a Long-Endurance UAV using FSI Analysis and the Kriging Method

  • Son, Seok-Ho;Choi, Byung-Lyul;Jin, Won-Jin;Lee, Yung-Gyo;Kim, Cheol-Wan;Choi, Dong-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.423-431
    • /
    • 2016
  • In this study, wing design optimization for long-endurance unmanned aerial vehicles (UAVs) is investigated. The fluid-structure integration (FSI) analysis is carried out to simulate the aeroelastic characteristics of a high-aspect ratio wing for a long-endurance UAV. High-fidelity computational codes, FLUENT and DIAMOND/IPSAP, are employed for the loose coupling FSI optimization. In addition, this optimization procedure is improved by adopting the design of experiment (DOE) and Kriging model. A design optimization tool, PIAnO, integrates with an in-house codes, CAE simulation and an optimization process for generating the wing geometry/computational mesh, transferring information, and finding the optimum solution. The goal of this optimization is to find the best high-aspect ratio wing shape that generates minimum drag at a cruise condition of $C_L=1.0$. The result shows that the optimal wing shape produced 5.95 % less drag compared to the initial wing shape.

Efficiency Estimation on Propulsion System of an Electric Powered UAV (전기동력 무인항공기의 추진시스템 효율 추정에 관한 연구)

  • Ahn, Il-Young;Yang, Yong-Man;Ju, Young-Chul;Park, SangHyuk;Bae, Jae-Sung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In the present study, we conducted the research on the high efficiency propulsion system for the development of long-endurance UAV with an electric propulsion system. For the long endurance UAV, fair aerodynamic characteristics with the high efficiency of the propulsion system is required because the flight power and the duration time of the long-endurance UAV vary greatly depending on the efficiency of the propulsion system. Therefore, in this study, the tracking program which records the performance of motor, propeller was developed because of their wide variation in the efficiency depending on the using condition, and records from the existing flight test program were utilized to check the accuracy of the program we had developed. For the development of future long-endurance solar UAV, we confirmed the applied voltage of motor, the optimal rotation of propeller and the gear ratio of reduction gear in order to get the highest efficiency on the propulsion system at the optimal flying condition.

Design of Guidance Law and Lateral Controller for a High Altitude Long Endurance UAV (고고도 장기체공 무인기의 유도 및 방향축 제어 알고리즘 설계)

  • Koo, Soyeon;Lim, Seunghan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • This paper elaborates on the directional axis guidance and control algorithm used in mission flight for high altitude long endurance UAV. First, the directional axis control algorithm is designed to modify the control variable such that a strong headwind prevents the UAV from moving forward. Similarly, the guidance algorithm is designed to operate the respective algorithms for Fly-over, Fly-by, and Hold for way-point flight. The design outcomes of each guidance and control algorithm were confirmed through nonlinear simulation of high altitude long endurance UAV. Finally, the penultimate purpose of this study was to perform an actual mission flight based on the design results. Consequently, flight tests were used to establish the flight controllability of the designed guidance and control algorithm.

Structural Analysis of Fuselage and Empennage of High Altitude Long Endurance UAV (고고도 장기체공 무인기 동체 및 미익부 구조해석)

  • Kim, Hyun-gi;Kim, Sung Joon;Kim, Sung Chan;Shin, Jeong-Woo;Lee, Seunggyu;Park, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.35-43
    • /
    • 2016
  • UAV has been promoted for practical use in the field of civilian and military. Recently, UAV is required high-specification performance such as long-term flight and precision observation. Among these UAVs, High Altitude Long Endurance UAV(HALE UAV) has been developed for the purpose to replace some of the functions of the satellite such as meteorological observation, communications and internet relay while flying a long period in the stratosphere. In order to fly a long period in harsh environment of the stratosphere, aircraft needs high Lift-Drag-Ratio and weight reduction of the structure. This paper performed the structural analysis for fuselage and empennage of HALE UAV. Critical loading conditions for structural analysis are acquired from flight load analysis and finally the results of structural sizing for weight reduction is presented.

Certification Criteria and Safety Assessment for High Altitude Long Endurance Unmanned Aerial Vehicle (장기체공 무인항공기 기술기준 및 안전성 평가 연구)

  • Ko, Joon Soo;Kim, Kyungmok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.7-13
    • /
    • 2016
  • Multi disciplinary approach for aerodynamics, structure, propulsion, and flight control system is necessary to develop High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAV). Various HALE UAV development trends are surveyed to understand their operational requirements. Separating the UAV Take Off Weight by 150kg, Airworthiness implementation direction for HALE UAV is studied under the current Airworthiness regulations. NATO STANAG 4671 and STANAG 4703 Airworthiness certification criteria are analyzed, and their applicability was proposed for future HALE UAV development. In addition, minimization of the risk for UAV is studied by considering probability of cumulative catastrophic failure for HALE UAV. This Hazard Risk Index can support the future UAV Airworthiness Certification Criteria.

A Study on Performance Simulation of an Reciprocating Engine for Small Long Endurance Unmanned Aerial Vehicles (소형 장기체공 무인기용 왕복엔진 성능 예측 시뮬레이션 연구)

  • Chang Sung-Ho;Koo Sam-Ok;Shin Younggy
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.820-827
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.