• Title/Summary/Keyword: Long Axis

Search Result 733, Processing Time 0.029 seconds

Palatal en-masse retraction of segmented maxillary anterior teeth: A finite element study

  • Park, Jae Hyun;Kook, Yoon-Ah;Kojima, Yukio;Yun, Sunock;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.188-193
    • /
    • 2019
  • Objective: The aim of this finite element study was to clarify the mechanics of tooth movement in palatal en-masse retraction of segmented maxillary anterior teeth by using anchor screws and lever arms. Methods: A three-dimensional finite element method was used to simulate overall orthodontic tooth movements. The line of action of the force was varied by changing both the lever arm height and anchor screw position. Results: When the line of action of the force passed through the center of resistance (CR), the anterior teeth showed translation. However, when the line of action was not perpendicular to the long axis of the anterior teeth, the anterior teeth moved bodily with an unexpected intrusion even though the force was transmitted horizontally. To move the anterior teeth bodily without intrusion and extrusion, a downward force passing through the CR was necessary. When the line of action of the force passed apical to the CR, the anterior teeth tipped counterclockwise during retraction, and when the line of action of the force passed coronal to the CR, the anterior teeth tipped clockwise during retraction. Conclusions: The movement pattern of the anterior teeth changed depending on the combination of lever arm height and anchor screw position. However, this pattern may be unpredictable in clinical settings because the movement direction is not always equal to the force direction.

A novel subdermal anchoring technique for the effective treatment of congenital melanocytic nevus using de-epithelialized dermal flaps

  • Han, Jin Woo;Sun, Hook;Kim, Jin Woo;Yun, Ji Young;Chung, Eui Han;Oh, Min Jun
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Background In patients with congenital melanocytic nevus (CMN), single-stage removal of large lesions can be difficult because the high tension created by excising and repairing a large lesion may result in scar widening. Herein, we introduce a method to effectively excise lesions while minimizing scarring and compare its outcomes to those of existing surgical methods. Methods We compared patients who underwent surgery using the anchoring technique (n=42) or the conventional elliptical technique (n=36). One side of the lesion was removed via en bloc resection up to the superficial fascia. The other side of the lesion was removed via de-epithelialization. The de-epithelialized dermal flap was then fixed by suturing it to the superficial fascia on the opposite side. The length of the lesion's long axis and amount of scar widening were measured immediately after surgery and at 2, 6, and 12 months postoperatively. At 12 months, patients were assessed using the Patient and Observer Scar Assessment Scale. Results The lesion locations included the face, arms, legs, back, and abdomen. The anchoring method resulted in shorter and smaller scars than the conventional method. There were no cases of postoperative hematoma or wound dehiscence. Significant differences in postoperative scar widening were found in the arm and leg areas (P<0.05). Conclusions The anchoring method introduced in this study can provide much better outcomes than the conventional method. The anchoring method is particularly useful for the removal of CMN around the joints or extremities, where the surgical site is subjected to high tension.

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

Study on Integrated Plan for Records Management based on Knowledge Management (지식경영을 기반으로 하는 기록관리 통합 운영방안에 관한 연구)

  • Chae, Minhoon;Rieh, Hae-young
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.1
    • /
    • pp.163-187
    • /
    • 2021
  • Although Korea's records management has achieved administrative development not only in private companies but also in public institutions, administrators and employees still lack awareness in records management. Nevertheless, knowledge management has been studied for a long time as a pillar of administration. Thus, this study compared and analyzed the records management process suggested in ISO 15489-1:2016 and the knowledge management process. In addition, by comparing and analyzing the records management components suggested by ISO 30301 and those of knowledge management suggested by ISO 30401, it was confirmed whether records management could be an axis of management similar to knowledge management. Moreover, an integrated model of records management and knowledge management was presented based on the comparative analysis of processes and management elements, and its implementation was presented from administrative and information governance perspectives.

A Case of Ascending Aortic Dissection with Severe Aortic Regurgitation Diagnosed by Echocardiography (심장초음파검사로 진단된 중증 대동맥판역류를 동반한 상행대동맥박리증 1예)

  • Kim, Sung-Hee;Lee, Ok-Kyoung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.425-429
    • /
    • 2020
  • Aortic dissection refers to the separation of the aorta into a true and false lumen as the medial membrane of the aorta is torn along the long axis due to a high aortic pressure when a minute rupture occurs in the aortic lining. The mortality rate is very high, and aortic dissection occurs 2~5 times more in men than women. The prevalent age range is 50~70 years old. In this case, the authors experienced a diagnosis of aortic dissection that occurred in a young woman in her 30s, which does not occur frequently. In the process of tracking severe aortic regurgitation, aortic valve prolapse was initially suspected. We report this case because aortic dissection could be diagnosed by observing the intimal flap of the ascending aorta in the process of confirming this suspected part.

Influence of zirconia and titanium fixture materials on stress distribution in abutment screws: a three-dimensional finite element analysis (지르코니아 및 티타늄 고정체 소재가 지대주 나사의 응력 분포에 미치는 영향: 3차원 유한 요소 분석)

  • Kim, Eun Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.42-47
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the stability of abutment screws used with the zirconia fixture-based implant system and compare them with those used with the existing titanium fixture system via the finite element method. Methods: A single implant-supported restoration was designed for the finite element analysis. A universal analysis program was used to set 8 occlusal points along the direction to the long axis of the implant, and an occlusal load of 700 N was applied. Results: In all models (Zir and Ti-fixture model), the screw threads presented with the highest von Mises stress (VMS) values, whereas the head and end presented with the lowest VMS values. The VMS of the screw used in the zirconia-fixture model was 5.97% lower than that used in the titanium-fixture model (261.258 vs. 276.911 MPa, respectively) despite statistical significance. Furthermore, the zirconia fixture (352.912 MPa) had a higher stress value (8.42%) than the titanium fixture (332.331 MPa). In a completely tightened titanium fixture implant system, the stress was concentrated in the implant-abutment connection interface, the zirconia fixture presented with a stable stress distribution. Conclusion: Although the zirconia fixture demonstrated a high VMS value, owing to the stiffness and elasticity coefficients of the material, the stress generated in the abutment screws was similar in all models. In conclusion, the zirconia fixture-based implant system presented with a more stable stress distribution in the abutment screws than the titanium fixture-based implant system.

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Effects of maternal dietary energy restriction on laying performance, embryonic development, and lipid metabolism in broilers

  • Sun, Hao;Chen, Zhihui;Ma, Chengzhan;Lian, Lina;Zhao, Zeyu;Niu, Shupeng;Xu, Liangmei;Sun, Jinhua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.698-710
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of different degrees of maternal dietary energy restriction on lipid deposition in embryonic tissues during the medium laying period (37 to 39 weeks) in Arbor Acres (AA) broiler breeders. Methods: A single factor design was adopted, and 400 AA broiler breeders (20 weeks of age) with a similar weight were randomly allocated into four groups. The birds in the control group were fed a corn-soybean meal based diet, and those in trial groups were fed diets with 80%, 70%, and 50% energy levels of the basal diet. Incubated eggs from the medium laying period were collected. Samples of developing embryos at various stages were prepared for composition analysis. Results: The embryo weight in the 80% energy group was higher than those of the other groups on embryonic day (E) 13, but at 21 E, they were significantly decreased with decreasing energy intake of the broiler breeders (p<0.05). Additionally, the levels of crude fat in tissues in the restriction groups were significantly decreased (p<0.05). The long axis and area of adipocytes in breast muscle, thigh muscle and the liver were significantly decreased (p<0.05) at 21 E in the 80%, 70%, and 50% energy groups. Conclusion: The effects of the 80% maternal dietary energy restriction energy affects egg production performance, egg quality, and nutrient deposition in egg weights, which then directly impacts on the developmental process of embryos, especially on fat utilization and deposition.

Dentinal tubule penetration of sodium hypochlorite in root canals with and without mechanical preparation and different irrigant activation methods

  • Renata Aqel de Oliveira;Theodoro Weissheimer;Gabriel Barcelos So ;Ricardo Abreu da Rosa ;Matheus Albino Souza;Rodrigo Goncalves Ribeiro ;Marcus Vinicius Reis So
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.1.1-1.11
    • /
    • 2023
  • Objectives: This study evaluated the dentinal penetration depth of 2.5% sodium hypochlorite (NaOCl) in root canals with and without preparation and different irrigant activation protocols. Materials and Methods: Sixty-three bovine mandibular incisors were randomly allocated to 6 groups (n = 10): G1, preparation + conventional needle irrigation (CNI); G2, preparation + passive ultrasonic irrigation (PUI); G3, preparation + Odous Clean (OC); G4, no preparation + CNI; G5, no preparation + PUI; G6, no preparation + OC; and CG (negative control; n = 3). Samples were filled with crystal violet for 72 hours. Irrigant activation was performed. Samples were sectioned perpendicularly along the long axis, 3 mm and 7 mm from the apex. Images of the root thirds of each block were captured with a stereomicroscope and analyzed with an image analysis software. One-way analysis of variance, followed by the Tukey post hoc test, and the Student's t-test were used for data analysis, with a significance level of 5%. Results: The NaOCl penetration depth was similar when preparation was performed, regardless of the method of irrigation activation (p > 0.05). In the groups without preparation, G6 showed greater NaOCl penetration depth (p < 0.05). The groups without preparation had a greater NaOCl penetration depth than those with preparation (p = 0.0019). Conclusions: The NaOCl penetration depth was similar in groups with root canal preparation. Without root canal preparation, OC allowed deeper NaOCl penetration. The groups without preparation had greater NaOCl penetration than those undergoing root canal preparation.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.