• Title/Summary/Keyword: Logic circuits

Search Result 530, Processing Time 0.023 seconds

A Method to Generate Test Patterns for Scan Designed Logic Circuits under Logic Value Constraints (논리값 제약을 갖는 스캔 설계 회로에서의 자동 시험 패턴 생성)

  • Eun Sei Park
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.94-103
    • /
    • 1994
  • In testing for practical scan disigned logic circuits, there may exist logic value constraints on some part of primary inputs due to various requirements on design and test. This paper presents a logic value system called taboo logic values which targets the test pattern generation of logic circuits under logic value constraints. The taboo logic system represents the logic value constraints and identifies additional logic value constraints through the implication of the tqaboo logic values using a taboo logic calculus. Those identified logic value constraints will guide the search during the test pattern generation of avoid the unfruitful searches and to identify redundant faults due to the logic value constraints very quickly. Finally, experimental results on ISCAS85 benchmark circuits will demonstrate the efficiency of the taboo logic values.

  • PDF

High speed wide fan-in designs using clock controlled dual keeper domino logic circuits

  • Angeline, A. Anita;Bhaaskaran, V.S. Kanchana
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.383-395
    • /
    • 2019
  • Clock Controlled Dual keeper Domino logic structures (CCDD_1 and CCDD_2) for achieving a high-speed performance with low power consumption and a good noise margin are proposed in this paper. The keeper control circuit comprises an additional PMOS keeper transistor controlled by the clock and foot node voltage. This control mechanism offers abrupt conditional control of the keeper circuit and reduces the contention current, leading to high-speed performance. The keeper transistor arrangement also reduces the loop gain associated with the feedback circuitry. Hence, the circuits offer less delay variability. The design and simulation of various wide fan-in designs using 180 nm CMOS technology validates the proposed CCDD_1 and CCDD_2 designs, offering an increased speed performance of 7.2% and 8.5%, respectively, over a conventional domino logic structure. The noise gain margin analysis proves good robustness of the CCDD structures when compared with a conventional domino logic circuit configuration. A Monte Carlo simulation for 2,000 runs under statistical process variations demonstrates that the proposed CCDD circuits offer a significantly reduced delay variability factor.

Implementation of a Switch-based LED Art Logic Circuit for Basic Digital Logic Circuit Practice (기초디지털논리회로 실습을 위한 스위치 기반 LED Art 논리 회로 구현)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • In this paper, we introduce an implementation method of switch-based LED (Light Emitting Diode) Art logic circuits to help understanding the operation principle of digital logic circuits. Digital logic circuit practice using bread board is widely practiced in colleges or high schools in South Korea. However, actual digital logic circuit practice lacks examples of basic implementation, and as results of this problem, study with more complicated examples disturbs understanding the basic operation principle of digital logic circuits. Therefore, we proposed and tested an implementation method of switch-based LED Art logic circuits to help understanding the necessity of digital logic circuits which control signals of multiple output devices simultaneously.

Design of Multivalued Logic Functions Using $I^2L$ Circuits ($I^2L$회로에 의한 다식논리함수의 설계)

  • 김흥수;성현경
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.24-32
    • /
    • 1985
  • This paper presents the design method for multivalued logic functions using $I^2L$ circuits. First, the a비orithm that transforms delta functions into discrete functions of a truncated difference is obtained. The realization of multivalued logic circuits by this algorithm is discussed. And then, the design method is achieved by mixing discrete functions and delta functions using the modified algorithm for given multivalued truth tables. The techniques discussed here are easily extended to multi-input and multi-output logic circuits.

  • PDF

Design and Implementation of a Fault Simulation System for Mixed-level Combinational Logic Circuits (혼합형 조합 회로용 고장 시뮬레이션 시스템의 설계 및 구현)

  • Park, Yeong-Ho;Son, Jin-U;Park, Eun-Se
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.311-323
    • /
    • 1997
  • This paper presents a fast fault simulation system for detecting stuck-at faults in mixed-level combinational logic circuits with gale level and switch -level primitives. For a practical fault simulator, the types are not restricted to static switch-level and/or gate-level circuits, but include dynamic switch-level circuits. To efficiently handle the multiple signal contention problems at wired logic elements, we propose a six-valued logic system and its logic calculus which are used together with signal strength information. As a basic algorithm for the fault simulation process, a well -known gate-level parallel pattern single fault propagation(PPSFP) technique is extended to switch-level circuits in order to handle pass-transistor circuits and precharged logic circuits as well as static CMOS circuits. Finally, we demonstrate the efficiency of our system through the experimental results for switch-level ISCAS85 benchmark combinational circuits and various industrial mixed-level circuits.

  • PDF

Design of MYNAMIC CMOS ARRAY LOGIC (DYNAMIC CMOS ARRAY LOGIC의 설계)

  • 한석붕;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1606-1616
    • /
    • 1989
  • In this paper, the design of DYNAMIC CMOS ARRAY LOGIC which has both advantages of dynamic CMOS and array logic circuits is proposed. The major components of DYNAMIC CMOS ARRAY LOGIC are two-stage dunamic CMOS circuits and an internal clock generator. The function block of dynamic CMOS circuits is realized as a parallel interconnection of NMOS transistors. Therefore the operating speed of DYNAMIC CMOS ARRAY LOGIC is much faster than the one of the conventional dynamic CMOS PLAs and static CMOS PLA. Also, the charge redistribution problem by internl delay is solved. The internal clock generator generates four internal clocks that drive all the dynamic CMOS circuits. During evaluation, two clocks of them are delayed as compared with others. Therefore the race problem is completoly eliminated. The internal clock generator also prevents the reduction of circuit output voltage and noise margin due to leakage current and charge coupling without any penalty in circuit operating speed or chip area utilization.

  • PDF

Power Supply Circuits with Small size for Adiabatic Dynamic CMOS Logic Circuits

  • Sato, Masashi;Hashizume, Masaki;Yotuyanagi, Hiroyuki;Tamesada, Takeomi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.179-182
    • /
    • 2000
  • Adiabatic dynamic CMOS logic circuits, which are called ADCL circuits, promise us to implement low power logic circuits. Since the power supply source for ADCL circuits had not been developed, we proposed a power supply circuit for them. It is shown experimentally that by using the power supply circuit ADCL circuits can work with lower power consumption than conventional static CMOS circuit. In this paper, the power supply circuit is improved so that the power consumption can be reduced. Also, it is shown by some experiments that by using the circuit, ADCL circuits can work with lower power consumption than before Improving.

  • PDF

The Optimization of Current Mode CMOS Multiple-Valued Logic Circuits (전류구동 CMOS 다치 논리 회로설계 최적화연구)

  • Choi, Jai-Sock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.134-142
    • /
    • 2005
  • The implementation of Multiple-Valued Logic(MVL) based on Current-Mode CMOS Logic(CMCL) circuits has recently been achieved. In this paper, four-valued Unary Multiple-Valued logic functions are synthesized using current-mode CMOS logic circuits. We properly make use of the fact that the CMCL addition of logic values represented using discrete current values can be performed at no cost and that negative logic values are readily available via reversing the direction of current flow. A synthesis process for CMCL circuits is based upon a logically complete set of basic elements. Proposed algorithm results in less expensive realization than those achieved using existing techniques in terms of the number of transistors needed. As an alternative to the cost-table techniques Universal Unary Programmable Circuit (UUPC) for a unary function is also proposed.

  • PDF

On the detection of short faults in BiCMOS circuits using current path graph (전류 경로 그래프를 이용한 BiCMOS회로의 단락고장 검출)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.184-195
    • /
    • 1996
  • Beause BiCMOS logic circuits consist of CMOS part which constructs logic function and bipolar part which drives output load, the effect of short faults on BiCMOS logic circuits represented different types from that on CMOS. This paper proposes new test method which detects short faults on BiCMOS logic circuits using current path graph. Proposed method transforms BiCMOS circuits into raph constructed by nodes and edges using extended switch-level model and separates the transformed graph into pull-up part and pull-down part. Also, proposed method eliminates edge or add new edge, according ot short faults on terminals of transistor, and can detect short faults using current path graph that generated from on- or off-relations of transistor by input patterns. Properness of proposed method is verified by comparing it with results of spice simulation.

  • PDF

A Study on Test Generation for Domino CMOS Logic Circuits (domino CMOS 논리회로의 테스트 생성에 관한 연구)

  • 이재민;이준모;정준모
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1118-1127
    • /
    • 1990
  • In this paper a new test generation method for Domino CMOS logic circuits is proposed. Because the stuck-at type fault is not adequate for Domino CMOS circuits the stuck-open fault, stuck-on fault and bridging fault are considered as fault models. It is shown that the test generation problem of Domino CMOS circuits results in functional block test generation problem. Test set is generated by using the logic minimizer which is a part of logic design system. An algorithm for reduction of test set is described. The proposed test method can be easily applied to various figures of circuits and make it easy to construct automatic test generator in design system. The proposed algorithms are programed and their efficiency is confirmed by examples.

  • PDF