• Title/Summary/Keyword: Lock-on and non-Lock-on

Search Result 92, Processing Time 0.026 seconds

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

Manufacturing of Non-contact Door Lock Providing Access Detection for Elderly Living Alone using PIR Sensors Based on Arduino (아두이노 기반의 PIR 센서를 이용한 독거노인 출입감지 및 비접촉 도어락 구현)

  • Jung, Ae-Ri;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.106-107
    • /
    • 2021
  • This paper implements a door lock using PIR sensor based on Arduino. When the PIR sensor detects movement, the door lock device is activated and RFID tags can be used. This door rock can prevent lonely death by detecting whether the resident is in or out, and it also has hygienic advantage because it unlocks without contact by using RFID. In addition, as door locks are frequently used in everyday life, the above-mentioned implementation can also increase participation in hands-on lectures.

  • PDF

Design and development of non-contact locks including face recognition function based on machine learning (머신러닝 기반 안면인식 기능을 포함한 비접촉 잠금장치 설계 및 개발)

  • Yeo Hoon Yoon;Ki Chang Kim;Whi Jin Jo;Hongjun Kim
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • The importance of prevention of epidemics is increasing due to the serious spread of infectious diseases. For prevention of epidemics, we need to focus on the non-contact industry. Therefore, in this paper, a face recognition door lock that controls access through non-contact is designed and developed. First very simple features are combined to find objects and face recognition is performed using Haar-based cascade algorithm. Then the texture of the image is binarized to find features using LBPH. An non-contact door lock system which composed of Raspberry PI 3B+ board, an ultrasonic sensor, a camera module, a motor, etc. are suggested. To verify actual performance and ascertain the impact of light sources, various experiment were conducted. As experimental results, the maximum value of the recognition rate was about 85.7%.

A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions (디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow

  • Huang, Dongmei;Wu, Teng;He, Shiqing
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.37-54
    • /
    • 2020
  • To investigate the motion-induced aeroelastic effects (or aerodynamic feedback effects) on a square cylinder in uniform flow, a series of wind tunnel tests involving the pressure measurement of a rigid model (RM) and simultaneous measurement of the pressure and vibration of an aeroelastic model (AM) have been systematically carried out. More specifically, the aerodynamic feedback effects on the structural responses, on the mean and root-mean-square wind pressures, on the power spectra and coherence functions of wind pressures at selected locations, and on the aerodynamic forces were investigated. The results indicated the vibration in the lock-in range made the shedding vortex more coherent and better organized, and hence presented unfavorable wind-induced effects on the structure. Whereas the vibration in the non-lock-in range generally showed insignificant effects on the flow structures surrounding the square cylinder.

A Concurrency Control Method for Non-blocking Search Operation based on R-tree (논 블록킹 검색연산을 위한 R-tree 기반의 동시성 제어 기법)

  • Kim, Myung-Keun;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.809-822
    • /
    • 2004
  • In this paper, we propose a concurrency control algorithm based on R-tree for spatial database management system. The previous proposed algorithms can't prevent problem that search operation is to be blocking during update operations. In case of multidimensional indexes like R-tree, locking of update operations may be locked to several nodes, and splitting of nodes have to lock a splitting node for a long time. Therefore search operations have to waiting a long time until update operations unlock. In this paper we propose new algorithms for lock-free search operation. First, we develop a new technique using a linked-list technique on the node. The linked-list enable lock-free search when search operations search a node. Next, we propose a new technique using a version technique. The version technique enable lock-free search on the node that update operations is to be splitting.

Development of LabVIEW Program for Lock-In Infrared Thermography (위상잠금 열화상장치 제어용 랩뷰 프로그램 개발)

  • Min, Tae-Hoon;Na, Hyung-Chul;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.127-133
    • /
    • 2011
  • A LabVIEW program has been developed together with simple infrared thermography(IRT) system to control the lock-in conditions of the system efficiently. The IR imaging software was designed to operate both of infrared camera and halogen lamp by synchronizing them with periodic sine signal based on thyristor(SCR) circuits. LabVIEW software was programmed to provide users with screen-menu functions by which it can change the period and energy of heat source, operate the camera to acquire image, and monitor the state of the system on the computer screen. In experiment, lock-in IR image for a specimen with artificial hole defects was obtained by the developed IRT system and compared with optical image.

Thermographic Defects Evaluation of Railway Composite Bogie (적외선열화상을 이용한 복합소재대차의 결함평가)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.548-553
    • /
    • 2011
  • The lock-in thermography was employed to evaluate the defects in railway bogies. Prior to the actual application on railway bogies, in order to assess the detectability of known flaws, the calibration reference panel was prepared with various dimensions of artificial flaws. The panel was composed of polymer matrix composites, which were the same material with actual bogies. Through lock-in thermography evaluation, the optimal frequency of heat source was determined for the best flaw detection. Based on the defects information, the actual defect assessments on railway bogie were conducted with different types of railway bogies, which were used for the current operation. In summary, it was found that the novel infrared thermography technique could be an effective way for the inspection and the detection of surface defects on bogies since the infrared thermography method provided rapid and non-contact investigation of railway bogies.

  • PDF

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

Numerical analysis of the vortex induced vibration of the 2-D cylinder using dynamic deforming mesh (동적격자변형기법을 이용한 2차원 실린더의 와류유발진동에 대한 수치해석)

  • Lee, Namhun;Baek, Jiyoung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, numerical simulations are performed on the lock-in phenomena of vortex induced vibration(VIV) of a two dimensional cylinder. A deforming grid as well as a rigidly moving grid are used to simulate the movement of the cylinder. The grid deformation is accomplished by the linear spring analogy. Converged solutions, which are obtained by controling the grid size and the non-dimensional time step, are used for comparison and validation of the analysis results. Moreover, the efficiency and the accuracy of the coupling methods for fluid-structure interaction are examined.