• Title/Summary/Keyword: Lock-nut structure

Search Result 3, Processing Time 0.016 seconds

The structure optimization of a lock nut (풀림방지용 Lock Nut 구조 최적화)

  • Cheong, Kwang-Yeil;Park, Tae-Won;Jung, Sung-Pil;Chung, Won-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.646-651
    • /
    • 2008
  • Bolts and nuts are widely used to fasten each mechanical part together in the machines and structures as vital elements. The primary role of bolts and nuts is keeping its axial force against the large external force and vibration. In this study, a lock nut using a spring was developed to maintain axial force. When the lock nut was made, crack occurred in the process of manufacturing the lock nut. Thus, optimized structure of lock nut was found by using the design of experiments. Lastly, the prototype of the optimized lock nut was created, and then the optimization result was verified by comparing results of the initial model and optimized model.

  • PDF

A Structural Analysis and Safety Evaluation of a Loose-proof Lock-Nut Structure (풀림방지 로크너트의 구조해석 및 안전성 평가)

  • Park, Sang Kun
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.20-24
    • /
    • 2012
  • In this paper, we perform a ANSYS simulation of assembly structure composed of three parts, bolt, nut, and coil spring, under the loading of a screw torque 640~800 ($N{\cdot}m$) derived from the given bolt tensile strength 10.9, which allows us to investigate a lock-nut mechanism for the prevention of bolt-loosening after three parts are fastened. And also we investigate the safety factor of each component with effective stress distribution obtained from the simulation, which enables us to estimate the structural safety of a new lock-nut structure. Both simulation and investigation shown in this paper will contribute to the development of a new lock nut structure.

  • PDF

Structure Optimization of a Nut for Prevention of Bolt Loosening (풀림방지용 너트 구조 최적화)

  • Cheong, Kwang-Yeil;Park, Tae-Won;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.965-970
    • /
    • 2010
  • Bolts and nuts are widely used to fasten mechanical parts together in machines and structures. The primary role of a nut is to maintain the axial force of a bolt. In this paper, a new type of a lock nut that uses a spring is studied. To have a spring within a nut, a cocking process to narrow the top of the nut is adopted, but cracking occurred in the process. In this study, strain of an initial model is measured using the finite element analysis program, MSC/Marc. The occurrence of the crack was studied by comparing the maximum observed strain of a model with the maximum strain indicated by an accurate stress-strain diagram of 1020 steel. Then, the structure of the lock nut was optimized by response surface analysis to prevent cracking. The prototype of the lock nut was manufactured on the basis of the optimization result, and cracking did not occur.