• Title/Summary/Keyword: Lock-in Infrared Thermography(LIT)

Search Result 4, Processing Time 0.018 seconds

A Study on the Optimized Test Condition of Lock-in IR Thermography by Image Processing

  • Cho, Yong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • In this study, it was studies the utilization of LIT(lock-in infrared thermography) which can detect defects in welded parts of ship and offshore structures. Quantitative analysis was used through methods of filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified reliability in our methods by applying image processing techniques in order to normalize evaluations of comparative images that show phase difference. In addition, low to mid exposure showed good results whereas high exposure did not provide significant results in regards to intensity of light exposure on surface. Lock-in frequency was satisfactory around 0.1 Hz regardless of intensity of light source we had. In addition, having the integration time of thermography camera inversely proportional to intensity of exposed light source during the experiment allowed good outcome of results.

Measurement Uncertainty on Subsurface Defects Detection Using Active Infrared Thermographic Technique (능동 적외선열화상 기법을 이용한 이면결함 검출에서의 측정 불확도)

  • Chung, Yoonjae;Kim, Wontae;Choi, Wonjae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.341-348
    • /
    • 2015
  • Active infrared thermography methods have been known to possess good fault detection capabilities for the detection of defects in materials compared to the conventional passive thermal infrared imaging techniques. However, the reliability of the technique has been under scrutiny. This paper proposes the lock-in thermography technique for the detection and estimation of artificial subsurface defect size and depth with uncertainty measurement.

Optimization of Lock-in Thermography Technique using Phase Image Processing (영상처리에 의한 위상잠금 열화상기법의 최적화 연구)

  • Cho, Yong-Jin;Han, Song-I
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.25-30
    • /
    • 2012
  • This study examined the use of LIT (lock-in infrared thermography) to detect defects in the welded parts of ships and offshore structures. A quantitative analysis was used with the filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified the reliability of our methods by applying image processing techniques in order to normalize the evaluations of comparative images that showed a phase difference. In addition, it was found that a low to mid-range intensity of light exposure on the surface showed good results, whereas high exposure did not provide significant results. A lock-in frequency of around 0.1 Hz was satisfactory regardless of the intensity of the light source. In addition, making the integration time of the thermography camera inversely proportional to the intensity of the exposed light source during the experiment provided good results.

NDE of Low-Velocity Impact Damage in GFRP Using Infrared Thermography Techniques

  • Kim, Ghiseok;Lee, Kye-Sung;Hur, Hwan;Kim, Sun-Jin;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.206-214
    • /
    • 2015
  • In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.