• Title/Summary/Keyword: Location histogram

Search Result 115, Processing Time 0.025 seconds

Double monothetic clustering for histogram-valued data

  • Kim, Jaejik;Billard, L.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • One of the common issues in large dataset analyses is to detect and construct homogeneous groups of objects in those datasets. This is typically done by some form of clustering technique. In this study, we present a divisive hierarchical clustering method for two monothetic characteristics of histogram data. Unlike classical data points, a histogram has internal variation of itself as well as location information. However, to find the optimal bipartition, existing divisive monothetic clustering methods for histogram data consider only location information as a monothetic characteristic and they cannot distinguish histograms with the same location but different internal variations. Thus, a divisive clustering method considering both location and internal variation of histograms is proposed in this study. The method has an advantage in interpreting clustering outcomes by providing binary questions for each split. The proposed clustering method is verified through a simulation study and applied to a large U.S. house property value dataset.

Detection of Skin Pigmentation using Independent Component Analysis

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • This paper presents an approach for detecting and measuring human skin pigmentation. In the proposed scheme, we extract a skin area by a Gaussian skin color model that is estimated from the statistical analysis of training images and remove tiny noises through the morphology processing. A skin area is decomposed into two components of hemoglobin and melanin by an independent component analysis (ICA) algorithm. Then, we calculate the intensities of hemoglobin and melanin by using the location histogram and determine the existence of skin pigmentation according to the global and local distribution of two intensities. Furthermore, we measure the area and density of the detected skin pigmentation. Experimental results verified that our scheme can both detect the skin pigmentation and measure the quantity of that and also our scheme takes less time because of the location histogram.

Reversible Watermarking Based On Histogram Shifting (히스토그램 쉬프팅 기법을 이용한 리버서블 워터마킹)

  • Hwang, Jin-Ha;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.3
    • /
    • pp.168-174
    • /
    • 2007
  • In this paper, we propose a reversible watermarking algorithm where an original image can be recovered from the watermarked image. Most watermarking algorithms cause degradation of image quality in original digital contents in the process of embedding watermarks. In the proposed algorithm, the original image can be obtained when the degradation is removed from the watermarked image after extracting watermark information. In the proposed algorithm, we utilize a peak point of image histogram and the location map and modify pixel values slightly to embed data. Because the peak point of image histogram and the location map are employed in this algorithm, there is no need of extra information transmitted to the receiving side. As the locations watermark embedding are identified using the location map, the amount of watermark data can increase through recursive embedding.

Broken Detection of the Traffic Sign by using the Location Histogram Matching

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.312-322
    • /
    • 2012
  • The paper presents an approach for recognizing the broken area of the traffic signs. The method is based on the Recognition System for Traffic Signs (RSTS). This paper describes an approach to using the location histogram matching for the broken traffic signs recognition, after the general process of the image detection and image categorization. The recognition proceeds by using the SIFT matching to adjust the acquired image to a standard position, then the histogram bin will be compared preprocessed image with reference image, and finally output the location and percents value of the broken area. And between the processing, some preprocessing like the blurring is added in the paper to improve the performance. And after the reorganization, the program can operate with the GPS for traffic signs maintenance. Experimental results verified that our scheme have a relatively high recognition rate and a good performance in general situation.

Obstacle a voidance using VFH (Vector Field Histogram) in four legged robot (VFH(Vector Field Histogram)을 이용한 4족 로봇의 장애물 회피)

  • Jung, Hyun-Ryong;Kim, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.23-26
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our four-legged robot.

  • PDF

Multiresolution Histogram Specification Method in The Spatial Domain for Image Enhancement (영상 개선을 위한 공간 영역에서의 다해상도 히스토그램 지정 기법)

  • Park, Se-Hyuk;Huh, Kyung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.169-171
    • /
    • 2009
  • The histogram specification is to change the histogram shape of the image into the already defined shape. This technique can be applied usefully in various image processing fields which include a machine vision. However, the histogram specification technique has its basic limits. For example, the histogram does not have location information of pixel within the image and receives the digital image, which is stored through a quantization process, as an input. Namely, the accuracy of specification falls in the high-resolution image because the larger the resolution of image is becoming, the more the pixels having similar value are becoming. Therefore, we proposed the multiresolution histogram specification method for improving the accuracy of specification. Consequently, we can know that if the histogram specification is accomplished by using the proposed algorithm, destination image and source image were changed almost similarly.

  • PDF

Obstacle avoidance using Vector Field Histogram in simulation (Vector Field Histogram를 이용한 장애물 회피 시뮬레이션)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1076-1079
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our simulation program and tested..

  • PDF

A Method of Improving Accuracy of Histogram Specification (정확성을 향상시킨 히스토그램 명세화 방법)

  • Huh, Kyung Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-179
    • /
    • 2014
  • The histogram specification turns the shape of a histogram into that we want to specify. This technique can be applied usefully in various image processing fields such as machine vision. However, the histogram specification technique has its basic limits. For instance, the histogram does not have location information of pixels. Also, the accuracy of the specification drops because of quantization errors of the digitized image. In this paper, we proposed a multiresolution histogram specification method in order to improve the accuracy of specification in terms of resemblance between destination and source image. The experimental results show that the proposed method enhances the accuracy of the specification compared to the conventional methods.

Efficient Use of MPEG-7 Edge Histogram Descriptor

  • Won, Chee-Sun;Park, Dong-Kwon;Park, Soo-Jun
    • ETRI Journal
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • MPEG-7 Visual Standard specifies a set of descriptors that can be used to measure similarity in images or video. Among them, the Edge Histogram Descriptor describes edge distribution with a histogram based on local edge distribution in an image. Since the Edge Histogram Descriptor recommended for the MPEG-7 standard represents only local edge distribution in the image, the matching performance for image retrieval may not be satisfactory. This paper proposes the use of global and semi-local edge histograms generated directly from the local histogram bins to increase the matching performance. Then, the global, semi-global, and local histograms of images are combined to measure the image similarity and are compared with the MPEG-7 descriptor of the local-only histogram. Since we exploit the absolute location of the edge in the image as well as its global composition, the proposed matching method can retrieve semantically similar images. Experiments on MPEG-7 test images show that the proposed method yields better retrieval performance by an amount of 0.04 in ANMRR, which shows a significant difference in visual inspection.

  • PDF

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.