• Title/Summary/Keyword: Location Image

Search Result 1,655, Processing Time 0.029 seconds

Stereo Object Tracking and Multiview image Reconstruction System Using Disparity Motion Vector (시차 움직임 벡터에 기반한 스데레오 물체추적 및 다시점 영상복원 시스템)

  • Ko Jung-Hwan;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.166-174
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Being based on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having 256$\times$256 pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05$\%$ on average between the detected and actual location coordinates of the target object.

X-ray Computed Tomography on Larger Diameter Timber than Digital Detector

  • Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • X-ray computed tomography is a very powerful nondestructive technique in safety inspection of historic timber building. But, in field, various testing condition makes it difficult to carry out X-ray CT testing. Limited size in X-ray digital detector is one of the problems. In this study, a pitch pine disk with two holes was used to know how imperfection in X-ray projection affects CT image resolution. Using various number of projections, CT image was reconstructed by filtered back projection method, and then it was investigated how many projection is required to identify the holes in different location. Two artificial holes could be differently detected according to their location in cross section of specimen. One hole in center part of specimen was identified using more than 9 radiographs, but the other one which located in outer part of cross section could not be detected until more than 36 projections were used. Even though there is data missing in outer part of cross section due to limited size of detector, the center part of CT image could be reconstructed well and the resolution of outer part became higher with increase of the number of projections. For field application, the number of projections for CT image reconstruction needs to be decided with consideration of another nondestructive testing and the location of interest.

Target Latitude and Longitude Detection Using UAV Rotation Angle (UAV의 회전각을 이용한 목표물 위경도 탐지 방법)

  • Shin, Kwang-Seong;Jung, Nyum;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, as the field of use of drones is diversified, it is actively used not only for surveying but also for search and rescue work. In these applications it is very important to know the location of the target or the location of the UAV. This paper proposes a target detection method using images taken from drones. The proposed method calculates the latitude and longitude information of the target by finding the location of the target by comparing it with the image to find the image taken by the drone. The exact latitude and longitude information of the target is calculated by calculating the actual distance corresponding to the distance of the image image using the characteristics of the pinhole camera. The proposed method through the actual experiment confirmed that the latitude and longitude of the target was accurately identified.

G-File stored in the location information management algorithm (G-File에 저장된 위치정보 관리 알고리즘)

  • Choi, Sang-Kyoon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.742-748
    • /
    • 2011
  • G-File on the position of the photo shoot pictures with built-in picture file to the user, the location and orientation of the image files using the data refers to the [1]. G-File is to store photo files, photo files and receiving means for receiving input, and picture files, photos and location information extracted by separating the subject's location information with location information and location analysis by means of the corresponding coordinates on the map including the location indicated in the guide means is characterized in that. In this paper, the G-File on the location information stored in the algorithm that can be managed is proposed. G-File on the algorithm used to manage the information to the user, G-File management is to provide convenience.

A HDR Algorithm for Single Image Based on Exposure Fusion Using Variable Gamma Coefficient (가변적 감마 계수를 이용한 노출융합기반 단일영상 HDR기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1059-1067
    • /
    • 2021
  • In this paper, a HDR algorithm for a single image is proposed using the exposure fusion, that adaptively calculates gamma correction coefficients according to the image distribution. Since typical HDR methods should use at least three images with different exposure values at the same scene, the main problem was that they could not be applied at the single shot image. Thus, HDR enhancements based on a single image using tone mapping and histogram modifications were recently presented, but these created some location-specific noises due to improper corrections. Therefore, the proposed algorithm calculates proper gamma coefficients according to the distribution of the input image and generates different exposure images which are corrected by the dark and the bright region stretching. A HDR image reproduction controlling exposure fusion weights among the gamma corrected and the original pixels is presented. As the result, the proposed algorithm can reduce certain noises at both the flat and the edge areas and obtain subjectively superior image quality to that of conventional methods.

Face Detection and Extraction Based on Ellipse Clustering Method in YCbCr Space

  • Jia, Shi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.833-840
    • /
    • 2010
  • In this paper a method for detecting and extracting the face from the image in YCbCr spaceis proposed. The face region is obtained from the complex original image by using the difference method and the face color information is taken from the reduced face region throughthe Ellipse clustering method. The experimental results showed that the proposed method can efficiently detect and extract the face from the original image under the general light intensity except for low luminance.

Image Processing Algorithm for Robotic Plug-Seedling (플러그 묘 이식용 로봇의 영상 처리 알고리즘)

  • 김철수;김만수;김기대
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A color image processing algorithm was developed to assist the robotic plug-seedling transplanter. The algorithm was designed to identify and locate empty cells in the seedling tray. The image of pepper seedling tray was segmented into regions of plant, frame and soil using thresholding technique which utilized HSI or RGB color characteristics of each region. The detection algorithm was able to successfully identify empty cells and locate their two-dimensional location. The overall success rate of the algorithm was about 88%.

  • PDF

The Implementation of User Image Recognition based on Embedded Linux (임베디드 리눅스 기반의 사용자 영상인식시스템 구현)

  • Park, Chang-Hee;Kang, Jin-Suk;Ko, Suk-Man;Kim, Jang-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.239-247
    • /
    • 2007
  • In this paper, we propose a system that the Linux is ported in embedded system with peripheral devices of CIS(CMOS Image Sensor) and GPS module. The system acquires GGA sentence from GPS module by recognizing camera and GPS is used module in Linux kernel. And then the received location information is used to include still image acquired through CIS According to this paper, We compose hardware for embedded system, attach board (including camera), port Linux BootLoader and Kernel. And. then we realize that it insert kernel in CIS control device driver and GPS module device driver.

Small Target Detection in Multi-Resolution Image Using Facet Model (다중 해상도 영상에서 페이싯 모델을 이용한 초소형 표적 검출)

  • Park, Ji-Hwan;Lee, Min-Woo;Lee, Chul-Hun;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2011
  • In this paper, we propose the technique to detect the location and size of the small target in multi-resolution image using cubic facet model. The input image is reduced by the multi-resolution and we obtain the multi-resolution images. We apply the facet model and the local maxima conditions to the multi-resolution images of each level. And then, we detect the location of the small target. We estimate that the location at the maximum of the $D_2$ which means the local maxima value of the facet model in the multi-resolution images is the location of the small target. We can detect the small target of the various size about the multi-resolution images of each level. In this paper, we experimented in the various infrared images with the small target. The method using the typical facet model applies a mask. However, the proposed method applies a mask in the multi-resolution images. We verified to vary the mask size and differ the size of the small target. The proposed algorithm can detect the location and size of the small target.

Image Processing and Deep Learning Techniques for Fast Pig's Posture Determining and Head Removal (돼지의 빠른 자세 결정과 머리 제거를 위한 영상처리 및 딥러닝 기법)

  • Ahn, Hanse;Choi, Wonseok;Park, Sunhwa;Chung, Yongwha;Park, Daihee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.457-464
    • /
    • 2019
  • The weight of pig is one of the main factors in determining the health and growth state of pigs, their shipment, the breeding environment, and the ration of feed, and thus measuring the pig's weight is an important issue in productivity perspective. In order to estimate the pig's weight by using the number of pig's pixels from images, acquired from a Top-view camera, the posture determining and the head removal from images are necessary to measure the accurate number of pixels. In this research, we propose the fast and accurate method to determine the pig's posture by using a fast image processing technique, find the head location by using a fast deep learning technique, and remove pig's head by using light weighted image processing technique. First, we determine the pig's posture by comparing the length from the center of the pig's body to the outline of the pig in the binary image. Then, we train the location of pig's head, body, and hip in images using YOLO(one of the fast deep learning based object detector), and then we obtain the location of pig's head and remove an outside area of head by using head location. Finally, we find the boundary of head and body by using Convex-hull, and we remove pig's head. In the Experiment result, we confirmed that the pig's posture was determined with an accuracy of 0.98 and a processing speed of 250.00fps, and the pig's head was removed with an accuracy of 0.96 and a processing speed of 48.97fps.