• Title/Summary/Keyword: Localized plasmon

Search Result 68, Processing Time 0.027 seconds

Formation of metal nano particles on optical fiber for fiber optic localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금속 나노 입자 형성)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • Various etching methods of optical fiber and formation of metal nano particles on the optical fiber have been proposed for fabrication of fiber optic localized surface plasmon resonance (FO LSPR) biosensors. Different types of etched optical fiber are possible by removing the cladding of optical fiber using HF (hydrofluoric acid) solution and BHF (buffered hydrofluoric acid) solution, which results in improved surface roughness when BHF solution is used. Localized surface plasmon can be formed and measured by formation of silver and gold nano particles on the etched optical fiber. The characteristics of the etched optical fiber and metal nano particles on the etched surface of the optical fiber play a key role in dictating the sensitivity of the LSPR sensors, so that the proposed results can be expected to be applied for related research on fiber optic based biosensors.

Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation (3차원 FDTD Simulation을 이용한 자기조립된 Ag 나노입자의 국소표면플라즈몬공명 상호작용 현상 연구)

  • Lee, Kyung-Min;Yoon, Soon-Gil;Jeong, Jong-Ryul
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.417-422
    • /
    • 2014
  • In this study, we investigated localized surface plasmon resonance and the related coupling phenomena with respect to various geometric parameters of Ag nanoparticles, including the size and inter-particle distance. The plasmon resonances of Ag nanoparticles were studied using three-dimensional finite difference time domain(FDTD) calculations. From the FDTD calculations, we discovered the existence of a symmetric and an anti-symmetric plasmon coupling modes in the coupled Ag nanoparticles. The dependence of the resonance wavelength with respect to the inter-particle distance was also investigated, revealing that the anti-symmetric mode is more closely correlated with the inter-particle distance of the Ag nanoparticles than the symmetric mode. We also found that higher order resonance modes are appeared in the extinction spectrum for closely spaced Ag nanoparticles. Plasmon resonance calculations for the Ag particles coated with a $SiO_2$ layer showed enhanced plasmon coupling due to the strengthened plasmon resonance, suggesting that the inter-particle distance of the Ag nanoparticles can be estimated by measuring the transmission and absorption spectra with the plasmon resonance of symmetric and anti-symmetric localized surface plasmons.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Characterization of gold nanoparticles on optical fiber for localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금 나노 입자 특성 분석)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2009
  • In this study, the optical properties of localized surface plasmon resonance sensor using optical fiber was analyzed as the variation of a size and surface density of gold nano particles on the etched optical fiber surface. It is shown that a size and surface density of gold nano particles on optical fiber surface are controlled by $Na_3$ citrate quantity and pH of gold colloid solution. To measure the sensitivity, peak wavelength of absorbance spectrum was detected as the reflective index of the solution. The sensor sensitivity is linearly dependent on the size and surface densities of gold nano particles from the results of optical experiments.

Surface Plasmon Effect in Hot Electron Based Photovoltaic Devices

  • Lee, Yeong-Geun;Jeong, Chan-Ho;Park, Jong-Hyeok;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.162-162
    • /
    • 2011
  • Nanometer-sized noble metals can trap and guide sunlight for enhanced absorption of light based on surface plasmon that is beneficial for generation of hot electron flows. A pulse of high kinetic energy electrons (1-3 eV), or hot electrons, in metals can be generated after surface exposure to external energy, such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms. It is highly probable that the correlation between hot electron generation and surface plasmon can offer a new guide for energy conversion systems [1-3]. We show that hot electron flow is generated on the modified gold thin film (<10 nm) of metal-semiconductor (TiO2) Schottky diodes by photon absorption, which is amplified by localized surface plasmon resonance. The short-circuit photocurrent obtained with low energy photons (lower than bandgap of TiO2, ~3.1-3.2 eV) is consistent with Fowler's law, confirming the presence of hot electron flows. The morphology of the metal thin film was modified to a connected gold island structure after heating to 120, 160, 200, and 240$^{\circ}C$. These connected island structures exhibit both a significant increase in hot electron flow and a localized surface plasmon with the peak energy at 550-570 nm, which was separately characterized with UV-Vis [4]. The result indicates a strong correlation between the hot electron flow and localized surface plasmon resonance with possible application in hot electron based solar cells and photodetectors.

  • PDF

Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc (접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성)

  • Kim, Jooyoung;Cho, Kyuman;Lee, Kyeong-Seok
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF

Localized Surface-Plasmon Resonance of Ag Nanoparticles Produced by Laser Dewetting to Improve the Performance of a Sensitized TiO2 Solar Cell (레이저 Dewetting에 의해 형성된 은 나노입자의 국소 표면플라즈몬 공명을 이용한 감응형 TiO2 태양전지 성능 향상)

  • Lee, Jeeyoung;Lee, Myeongkyu
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.215-219
    • /
    • 2018
  • In this paper we show that the localized surface-plasmon resonance of Ag nanoparticles produced by laser dewetting can be effectively utilized for improving the photocurrent and efficiency of a dye-sensitized $TiO_2$ solar cell. An Ag thin film deposited on a conducting glass substrate was dewetted into nanoparticles by a pulsed laser. A dye-sensitized $TiO_2$ solar cell fabricated on this substrate containing the Ag nanoparticles exhibited improved photovoltaic performance, compared to a reference cell. This is attributed to the increased light trapping that arises from the localized surface-plasmon resonance of the dewetted Ag nanoparticles.

Properties of the Dye Sensitized Solar Cell with Localized Surface Plasmon Resonance Inducing Au Nano Thin Films

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.417-421
    • /
    • 2016
  • We improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC) by preparing a working electrode (WE) with localized surface plasmon resonance (LSPR) by inducing Au thin films with thickness of 0.0 to 5.0 nm, deposited via sputtering. Field emission scanning electron microscopy and atomic force microscopy were used to characterize the microstructure of the blocking layer (BL) of the Au thin films. Micro-Raman measurement was employed to confirm the LSPR effect, and a solar simulator and potentiostat were used to evaluate the photovoltaic properties, including the impedance and the I-V of the DSSC of the Au thin films. The results of the microstructural analysis confirmed that nano-sized Au agglomerates were present at certain thicknesses. The photovoltaic results show that the ECE reached a value of 5.34% with a 1-nm thick-Au thin film compared to the value of 5.15 % without the Au thin film. This improvement was a result of the increase in the LSPR of the $TiO_2$ layer that resulted from the Au thin film coating. Our results imply that the ECE of a DSSC may be improved by coating with a proper thickness of Au thin film on the BL.

Fiber-Optic Sensor Simultaneously Detecting Localized Surface Plasmon Resonance and Surface-Enhanced Raman Scattering

  • Norov, Erdene;Jeong, Hyeon-Ho;Park, Jae-Hyoung;Lee, Seung-Ki;Jeong, Dae Hong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.46-51
    • /
    • 2013
  • This study reports a fiber-optic sensor detecting biomolecule by simultaneously monitoring localized surface plasmon resonance (LSPR) from gold nanoparticles (Au NPs) of ca. $50{\pm}5$ nm attached on one end of optical fiber and surface enhanced Raman scattering (SERS) of the reporter molecules adsorbed on the gold surfaces as an additional sensing tool. The sensor was fabricated by immobilizing Au NPs on one end of an optical fiber by chemical reaction. LSPR and SERS signals of the sensor were measured using various refractive indices solutions. Finally, the sensor was applied to observe real-time LSPR sensor-gram and SERS spectra of the reporter molecule of 4-aminothiphenol during the antibody-antigen reaction of interferon-gamma (IFN-${\gamma}$) as a proof-concept experiment of biological applications.