• Title/Summary/Keyword: Localized heating

Search Result 76, Processing Time 0.03 seconds

Distortion Response of Motor Axis with Permanent Magnet as Shrink Fitting (영구자석 여자전동기 회전부 축의 열박음에 따른 변형특성)

  • Woo, Byung-Chul;Jeong, Yeon-Ho;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1451-1453
    • /
    • 2003
  • Shrink fitting is often used to replace conventional mechanical fasteners and fastening methods. Localized heating of the mating surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis with shrink fitting of thermal expansion.

  • PDF

Regulation of Star Formation in Turbulent, Multiphase Interstellar Media

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the star formation rate (SFR) in turbulent, multiphase, galactic gaseous disks. Our simulation domain is axisymmetric, and local in the radial direction and global in the vertical direction. Our models include galactic rotation, vertical density stratification, self-gravity, radiative heating and cooling, and thermal conduction, but do not include spiral-arm features. Turbulence in our models is driven by momentum feedback from supernova explosion events occurring in localized dense regions formed by thermal and gravitational instabilities. Self-consistent radiative heating, representing enhanced/reduced FUV photons from the star formation, is also taken into account. By controlling three parameters (the gas surface density, the stellar disk density, and the angular rotation rate) that characterize local galactic disks, we explore how the SFR depends on the background environmental state. We also discuss the relation between the SFR and the gas surface density found in our numerical models in comparison with observations.

  • PDF

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

Bonding properties of BGA solder ball with laser process (레이저 공정에 따른 BGA용 solder ball의 접합 특성)

  • Kim, Seong-Uk;Kim, Suk-Hwan;Yun, Byeong-Hyeon;Cheon, Chang-Geun;Park, Jae-Hyeon;Gwon, Yeong-Gak
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.231-233
    • /
    • 2005
  • Laser have been utilized as a heat source for the soldering of electronic components for the their capability of localized heating and faster heating rate. Laser soldering process, especially the diode laser soldering of BGA solderball was investigated. In this study, an attempt was made to investigate the possibility of laser soldering using Sn-37Pb and Sn-3Ag-0.5Cu solderball. The laser energy absorbed on the pad raised the temperature of the solderball forming a reflowed solder bump. The result were discussed based on the measurement of pull and shear strength of the bond.

  • PDF

Measurement of Radiative Loss from the Multi-layer Spectral Inversion of the Ha line and Ca II 8542 line taken by the FISS

  • Kang, Soo Sang;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.3-78
    • /
    • 2021
  • Measuring radiative loss from the solar chromospheric lines like Ha line, Ca II 8542 line helps to infer the exact amount of non-thermal heating in the solar atmosphere. By courtesy of the multi-layer spectral inversion, it is able to determine the radiative loss in the upper and lower chromosphere. Consequently, we found that the radiative loss is around 10 kW/m2, which is consistent with previous studies. Comparing the radiative loss at the upper and lower chromosphere, the loss at the lower chromosphere is larger than that of upper chromosphere and tends to spread all over the field of view while the loss in the upper chromosphere tends to be localized. We hope to find a hint for specific non-thermal heating process to explain the chromospheric radiative loss.

  • PDF

Combustion Characteristics of Wide Flame Burner (Wide Flame 버너의 연소 특성)

  • Park, Chang-Soo;Lee, Pil-Hyong;Han, Sang-Seok;Lee, Jae-Young;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2204-2209
    • /
    • 2008
  • Flame pattern in burner used in steel industry that constitutes 30% of country energy consumption is generally characterized as long narrow flame pattern so that localized heating causes product quality worse and many burners are needed for proper heating. This paper deals with flat wide flame pattern which has advantage in terms of uniform heating using less number of burners. For that purpose, impinging jet system of fuel and oxidant was used for making flat wide flame. Results show that nozzle angle $75^{\circ}$ of impinging jet is found to be optimum configuration for making effective wide flame which has uniform radiation heat transfer and flame temperature is also most uniform along the flame width for that nozzle angle.

  • PDF

Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics® (콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구)

  • Jo, Taehwan;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the development of geodynamic structures such as subduction and rift zones, a weakening mechanism is essential for localized weak zone formation in the lithosphere. Shear heating, a weakening mechanism, generates short-wavelength temperature elevation in the lithosphere; the increased temperature can reduce lithospheric strength and promote its breakup. A two-dimensional elastoplastic extensional basin model was used to conduct benchmarking based on previous numerical simulation studies to quantitatively analyze shear heating. The amount of shear heating was investigated by controlling the yield strength, extensional velocity, and strain- and temperature-dependent weakening. In the absence of the weakening mechanism, the higher yield strength and extensional velocity led to more vigorous shear heating. The reference model with a 100-MPa yield strength and 2-cm/year extension showed a temperature increase of ~ 50 K when the bulk extension was 20 km (i.e., 0.025 strain). However, in the yield-strength weakening mechanism, depending on the plastic strain and temperature, more efficient weakening induced stronger shear heating, which indicates positive feedback between the weakening mechanism and the shear heating. The rate of shear heating rapidly increased at the initial stage of deformation, and the rate decreased by 80% as the lithosphere weakened. This suggests that shear heating with the weakening mechanism can significantly influence the strength of relatively undamaged lithosphere.

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

Surface Plasmon Effect in Hot Electron Based Photovoltaic Devices

  • Lee, Yeong-Geun;Jeong, Chan-Ho;Park, Jong-Hyeok;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.162-162
    • /
    • 2011
  • Nanometer-sized noble metals can trap and guide sunlight for enhanced absorption of light based on surface plasmon that is beneficial for generation of hot electron flows. A pulse of high kinetic energy electrons (1-3 eV), or hot electrons, in metals can be generated after surface exposure to external energy, such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms. It is highly probable that the correlation between hot electron generation and surface plasmon can offer a new guide for energy conversion systems [1-3]. We show that hot electron flow is generated on the modified gold thin film (<10 nm) of metal-semiconductor (TiO2) Schottky diodes by photon absorption, which is amplified by localized surface plasmon resonance. The short-circuit photocurrent obtained with low energy photons (lower than bandgap of TiO2, ~3.1-3.2 eV) is consistent with Fowler's law, confirming the presence of hot electron flows. The morphology of the metal thin film was modified to a connected gold island structure after heating to 120, 160, 200, and 240$^{\circ}C$. These connected island structures exhibit both a significant increase in hot electron flow and a localized surface plasmon with the peak energy at 550-570 nm, which was separately characterized with UV-Vis [4]. The result indicates a strong correlation between the hot electron flow and localized surface plasmon resonance with possible application in hot electron based solar cells and photodetectors.

  • PDF

Examination of the Impact of Substituting Germanium for Bismuth on the Energy Density and Electrical Conductivity of the Se60Ge40-xBix Alloy

  • Kareem Ali Jasim;Haider Sahi Hussein;Shaymaa Hashim Aneed;Ebtisam Mohammed Taqi Salman
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.267-274
    • /
    • 2024
  • In this study, four different samples of Se60Ge40-xBix chalcogenides glasses were synthesized by heating the melt for 18 h in vacuum Pyrex ampoules (under a 10-4 Torre vacuum), each with a different concentration (x = 0, 10, 15, and 20) of high purity starting materials. The results of direct current (DC) electrical conductivity measurements against a 1,000/T plot for all chalcogenide samples revealed two linear areas at medium and high temperatures, each with a different slope and with different activation energies (E1 and E2). In other words, these samples contain two electrical conduction mechanisms: a localized conduction at middle temperatures and extended conduction at high temperatures. The results showed the local and extended state parameters changed due to the effective partial substitution of germanium by bismuth. The density of extended states N(Eext) and localized states N(Eloc) as a function of bismuth concentration was used to gauge this effect. While the density of the localized states decreased from 1.6 × 1014 to 4.2 × 1012 (ev-1 cm-3) as the bismuth concentration increased from 0 to 15, the density of the extended states generally increased from 3.552 × 1021 to 5.86 × 1021 (ev-1 cm-3), indicating a reduction in the mullet's randomness. This makes these alloys more widely useful in electronic applications due to the decrease in the cost of manufacturing.