• Title/Summary/Keyword: Localization algorithm

Search Result 808, Processing Time 0.03 seconds

Sound Source Externalization Algorithm Using Modified HRTFs and an Acoustic Simulation Method (변형된 머리전달 함수 및 음향 시뮬레이션 기법을 이용한 음상 외재화 알고리즘)

  • Lee, Yong-Ju;Jang, Dae-Young;Jang, In-Seon;Kang, Kyeong-Ok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.714-722
    • /
    • 2009
  • This paper presents a new sound source externalization algorithm for increasing spaciousness and presence on earphone or headphone environments. To do this, we used modified head related transfer functions (M-HRTFs) and room impulse responses acquired by an acoustic simulation method. M-HRTFs developed by ETRI have less tone color distortion of original sound sources than traditional HRTFs. The acoustic simulation method is used to obtain more natural reflected sound. To verify the proposed externalization algorithm, we performed a listening test. From the test, the proposed algorithm is effective in externalizing the sound sources especially when they are on the left and right sides.

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

Artificial reverberation algorithm to control distance of phantom sound source for surround audio system (서라운드 오디오 시스템을 위한 가상음원의 거리를 조절할 수 있는 인공잔향기)

  • Shim, Hwan;Seo, Jeong-Hun;Sung, Koeng-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.447-450
    • /
    • 2005
  • Multi-channel artificial reverberation algorithm to control perceived direction and distance is described in this paper. In conventional algorithms using IIR filters, reverberation time is the only parameter to be controlled. Moreover, since the convolution-based conventional algorithms apply only same impulse responses, but not considering sound localization, it was not realistic enough. The new algorithm proposed in this paper utilizes early reflections segmented according to the azimuth from which direct sound comes and controls perceived direction by panning the direct sound, and controls perceived distance by adjusting Energy Decay Curve (EDC) of reverberation and gain of the direct sound. In addition, the algorithm enhances Listener Envelopment(LEV) to make late reverberation incoherent among channels.

  • PDF

Weighted Distance-Based Quantization for Distributed Estimation

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2014
  • We consider quantization optimized for distributed estimation, where a set of sensors at different sites collect measurements on the parameter of interest, quantize them, and transmit the quantized data to a fusion node, which then estimates the parameter. Here, we propose an iterative quantizer design algorithm with a weighted distance rule that allows us to reduce a system-wide metric such as the estimation error by constructing quantization partitions with their optimal weights. We show that the search for the weights, the most expensive computational step in the algorithm, can be conducted in a sequential manner without deviating from convergence, leading to a significant reduction in design complexity. Our experments demonstrate that the proposed algorithm achieves improved performance over traditional quantizer designs. The benefit of the proposed technique is further illustrated by the experiments providing similar estimation performance with much lower complexity as compared to the recently published novel algorithms.

LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control (LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Seong-Jea;Hong, Sup;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.

A Study on Efficient Watershed Algorithm by Using Improved SUSAN Algorithm

  • Choi, Yong-Hwan;Kim, Yong-Ho;Kim, Joong-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.431-434
    • /
    • 2003
  • In this paper, we propose an efficient method not only f3r producing accurate region segmentation, solving the over-segmentation problem of watershed algorithm but also f3r reducing post-processing time by reducing computation loads. Through this proposed method, region segmentation of neighboring objects and discrimination of similar intensities were effectively obtained. Input image of watershed algorithm has used the derivative-based detectors such as Sobel and Canny. But proposed method uses the pixels-similarity-based detector, that is, SUSAN. By adopting this proposed method, we can reduce the noise problem and solve the problem of over-segmentation and not lose the edge information of objects. We also propose Zero-Crossing SUSAN. With Zero-Crossing SUSAN, the edge localization, times and computation loads can be improved over those obtained from existing SUSAN

  • PDF

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang;Soojeon Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.758-767
    • /
    • 2023
  • In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.

An Improvement for Location Accuracy Algorithm of Moving Indoor Objects (실내 이동 객체의 위치 정확도 개선을 위한 알고리즘)

  • Kim, Mi-Kyeong;Jeon, Hyeon-Sig;Yeom, Jin-Young;Park, Hyun-Ju
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 2010
  • This paper addresses the problem of moving object localization using Ultra-Wide-Band(UWB) range measurement and the method of location accuracy improvement of the indoor moving object. Unlike outdoor environment, it is difficult to track moving object position due to various noises in indoor. UWB is a radio technology that has attention for localization applications recently. UWB's ranging technique offer the cm accuracy. Its capabilities for data transmission, range accurate estimation and material penetration are suitable technology for indoor positioning application. This paper propose a positioning algorithm of an moving object using UWB ranging technique and particle filter. Existing positioning algorithms eliminate estimation errors and bias after location estimation of mobile object. But in this paper, the proposed algorithm is that eliminate predictable UWB range distance error first and then estimate the moving object's position. This paper shows that the proposed positioning algorithm is more accurate than existing location algorithms through experiments. In this study, the position of moving object is estimated after the triangulation and eliminating the bias and the ranging error from estimation range between three fixed known anchors and a mobile object using UWB. Finally, a particle filter is used to improve on accuracy of mobile object positioning. The results of experiment show that the proposed localization scheme is more precise under the indoor.

The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra (동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정)

  • Kim, Jae Joon;Jee, Gui-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.94-96
    • /
    • 2021
  • In this paper, we develop a new navigation algorithm for industrial mobile robots to arrive at the destination in unknown environment. To achieve this, we suggest a navigation algorithm that combines Dynamic Window Approach (DWA) and Dijkstra path planning algorithm. We compare Local Dynamic Window Approach (LDWA), Global Dynamic Window Approach(GDWA), Rapidly-exploring Random Tree (RRT) Algorithm. The navigation algorithm using Dijkstra algorithm combined with LDWA and GDWA makes mobile robots to reach the destination. and obstacles faced during the path planning process of LDWA and GDWA. Then, we compare on time taken to arrive at the destination, obstacle avoidance and computation complexity of each algorithm. To overcome the limitation, we seek ways to use the optimized navigation algorithm for industrial use.

  • PDF

Target classification in indoor environments using multiple reflections of a SONAR sensor (초음파의 다중반사 특성을 이용한 실내공간에서의 목표물 인식에 관한 연구)

  • 류동연;박성기;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1738-1741
    • /
    • 1997
  • This paper addresses the issue fo target classification and localization with a SONAR for mobiler robot indoor navigation. In particular, multiple refetions of SONAR sound are used actively and interntionally. As for the SONAR sensor, the multiple reflection has been generally considered as one of the noisy phenomena, which is inevitable in the indoor environments. However, these multiple reflections can be a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. This paper develops a new SONAR sensor module with a reflection plane which can actively create the multiple refection. This paper also intends to suggest a new target classification emthod which uses the multiple refectiions. We approximate the world as being two dimensional and assume that the targets consisting of the indoor environment are pland, corner, and edge. Multiple reflection paths of an acoustic bean by a SONAR are analyzed, by simulations and the patterns of the TOPs (Time Of Flight) and angles of multiple reflections from each target are also analyzed. In addition, a new algorithm for target classification and localization is proposed.

  • PDF