• 제목/요약/키워드: Local_Updating_Rule

검색결과 9건 처리시간 0.025초

개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법 (Optimal solution search method by using modified local updating rule in Ant Colony System)

  • 홍석미;정태충
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.15-19
    • /
    • 2004
  • 개미군락시스템 (Ant Colony System, ACS)은 조합 최적화 문제를 해결하기 위한 기법으로 생물학적 기반의 메타휴리스틱 접근법이다. 지나간 경로에 대하여 페로몬을 분비하고 통신 매개물로 사용하는 실제 개미들의 추적 행위를 기반으로 한다. 최적 경로를 찾기 위해서는 보다 다양한 에지들에 대한 탐색이 필요하다. 기존 개미군락시스템의 지역 갱신 규칙에서는 지나간 에지에 대하여 고정된 페로몬 갱신 값을 부여하고 있다. 그러나 본 논문에서는 방문한 도시간의 거리와 해당 에지의 방문 횟수를 이용하여 페로몬을 부여한다. 보다 많은 정보를 탐색에 활용함으로써 기존의 방법에 비해 지역 최적화에 빠지지 않고 더 나은 해를 찾을 수 있었다.

부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법 (Optimal solution search method by using modified local updating rule in ACS-subpath algorithm)

  • 홍석미;이승관
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.443-448
    • /
    • 2013
  • 개미군락시스템(Ant Colony System, ACS)은 조합 최적화 문제를 해결하기 위한 기법으로 생물학적 기반의 메타휴리스틱 접근법이다. 지나간 경로에 대하여 페로몬을 분비하고 통신 매개물로 사용하는 실제 개미들의 추적 행위를 기반으로 한다. 최적 경로를 찾기 위해서는 보다 다양한 에지들에 대한 탐색이 필요하다. 기존 개미군락시스템의 지역 갱신 규칙에서는 지나간 에지에 대하여 고정된 페로몬 갱신 값을 부여하고 있다. 그러나 본 논문에서는 현재 선택한 노드에 대한 이전 iteration 에서 방문한 총 빈도수를 고려한 페로몬 부여 방법을 지역갱신규칙에 사용하고자 한다. 탐색을 위해서는 부경로를 이용한 ACS알고리즘을 사용하였다. 보다 많은 정보를 탐색에 활용함으로써 기존의 방법에 비해 지역 최적화에 빠지지 않고 더 나은 해를 찾을 수 있다.

Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구 (An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem)

  • 정태웅;이승관;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF

Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구 (A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System(ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 이것은 greedy search뿐만 아니라 exploitation of positive feedback을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안되었다. 본 논문에서는 전통적 전역갱신과 지역갱신 방법에 개미들이 방문한 각 간선에 대한 방문 횟수를 강화값으로 추가한 새로운 방법의 ACS를 제안한다. 그리고 여러 조건 하에서 TCS 문제를 풀어보고 그 성능에 대해 기존의 ACS 방법과 제안된 ACS 방법을 비교 평가해, 최적해에 더 빨리 수렴함을 실험을 통해 알 수 있었다.

순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색 (Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem)

  • 홍석미;이영아;정태충
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.862-866
    • /
    • 2003
  • 조합 최적화 문제인 순회 판매원 문제(Traveling Salesman Problem, TSP)를 유전자 알고리즘(Genetic Algorithm)과 Local Search Heuristic인 Lin-Kernighan(LK) Heuristic[1]을 이용하여 접근하는 것은 최적 해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP 문제를 해결하기 위한 또 다른 접근법으로 ACS(Ant Colony system) 알고리즘을 소개하고 새로운 페로몬 갱신 방법을 제시하고자 한다. ACS 알고리즘은 다수의 개미들이 경로를 만들어 가는 과정에서 각 에지상의 페로몬 정보를 이용하며, 이러한 반복적인 경로 생성 과정을 통해 최적 해를 발견하는 방법이다. ACS 기법의 전역 갱신 단계에서는 생성된 모든 경로들 중 전역 최적 경로에 속한 에지들에 대하여 페로몬을 갱신한다. 그러나 본 논문에서는 전역 갱신 규칙이 적용되기 전에 생성된 모든 에지에 대하여 페로몬을 한번 더 갱신한다. 이 때 페로몬 갱신을 위해 각 에지들의 발생 빈도수를 이용한다. 개미들이 생성한 전체 에지들의 발생 빈도수를 페로몬 정보에 대한 가중치(weight)로 부여함으로써 각 에지들에 대하여 통계적 수치를 페로몬 정보로 제공할 수 있었다. 또한 기존의 ACS 알고리즘보다 더 빠른 속도로 최적 해를 찾아내며 더 많은 에지들이 다음 번 탐색에 활용될 수 있게 함으로써 지역 최적화에 빠지는 것을 방지할 수 있다.

전역 최적 경로가 향상되지 않는 반복 탐색 횟수를 고려한 개미 집단 시스템 (Ant Colony System Considering the Iteration Search Frequency that the Global Optimal Path does not Improved)

  • 이승관;이대호
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.9-15
    • /
    • 2009
  • 개미 집단 시스템은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 기존 개미 집단시스템은 전역갱신과정에서 탐색된 전역 최적 경로에 대해서만 페로몬 갱신을 수행하는데, 전역 최적 경로가 탐색되지 않으면 페로몬 증발만 일어나며 주어진 종료 조건을 만족할 때까지 아무리 많은 반복 수행에도 페로몬 강화가 일어나지 않는다. 본 논문에서 제안된 개선된 개미 집단시스템은 전역 최적 경로의 길이가 주어진 반복 사이클 횟수 동안 더 이상 향상되지 못하면 국부최적에 빠졌다고 평가하고 상태전이 규칙에서 파라미터 감소를 통해 다음 노드를 선택하게 하였다. 이로 인해, 상태전이 규칙에서 파라미터 감소에 의한 다양화 전략으로 탐색하는 결과가 최적 경로 탐색뿐만 아니라, 평균 최적 경로 탐색과 평균 반복횟수의 성능이 우수함을 보여 주었으며, 실험을 통해 그 성능을 평가하였다.

고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석 (Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method)

  • 성홍근;최항순
    • 대한조선학회논문집
    • /
    • 제37권1호
    • /
    • pp.67-81
    • /
    • 2000
  • 본 연구에서는 2차원 비선형 방사문제에 대한 정확하고 효과적인 수치기법을 개발하였다. 물체운동에 의해서 생성되는 비선형파계는 이상유체라는 가정에 의하여 기술되고, 라프라스 방정식은 고차경계요소법과 GMRES(Generalized Minimal RESidual) 알고리즘을 이용하여 신속하고 효율적인 풀이가 가능하도록 하였다. 자유표면과 물체면의 교차점에서 발생하는 교차선문제는 불연속 요소를 이용하여 원활하게 해결하였다. 자유표면의 비선형운동을 기술하기 위해서 음해적 사다리꼴 법칙(implicit trapezoidal rule)을 사용하여 시적분하였다. 물체에 의해서 발생한 비선형파가 수직 하류면에서 반사하는 것을 줄이기 위하여 하류면에 수치감쇠항을 도입하였다. 수치계산 결과로부터 본 시적분법 및 수치방사조건이 비선형 방사문제에 매우 적합함을 확인하였다. 시적분 과정에서 자유표면의 격자점들을 재배치함으로써 수치해법의 효율성을 배가하였으며, 교차점근처의 유동 또한 정확하게 기술하였다. 가속도 포텐셜(acceleration potential) 기법을 이용하여 정확하고 안정하게 비선형 방사력을 구하였다. 본 수치계산결과는 다른 수치계산 및 실험결과와 비교하여 볼 때, 좋은 일치를 보인다.

  • PDF

A Novel Binary Ant Colony Optimization: Application to the Unit Commitment Problem of Power Systems

  • Jang, Se-Hwan;Roh, Jae-Hyung;Kim, Wook;Sherpa, Tenzi;Kim, Jin-Ho;Park, Jong-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.174-181
    • /
    • 2011
  • This paper proposes a novel binary ant colony optimization (NBACO) method. The proposed NBACO is based on the concept and principles of ant colony optimization (ACO), and developed to solve the binary and combinatorial optimization problems. The concept of conventional ACO is similar to Heuristic Dynamic Programming. Thereby ACO has the merit that it can consider all possible solution sets, but also has the demerit that it may need a big memory space and a long execution time to solve a large problem. To reduce this demerit, the NBACO adopts the state probability matrix and the pheromone intensity matrix. And the NBACO presents new updating rule for local and global search. The proposed NBACO is applied to test power systems of up to 100-unit along with 24-hour load demands.

차 영상 맵 기반의 능동 윤곽선 모델을 이용한 이동 물체 추적 (Tracking a Moving Object Using an Active Contour Model Based on a Frame Difference Map)

  • 이부환;김도종;최일;전기준
    • 대한전자공학회논문지SP
    • /
    • 제41권5호
    • /
    • pp.153-163
    • /
    • 2004
  • 본 논문은 연속 영상에서 능동 윤곽선 모델을 이용하여 불규칙하게 형태가 변하거나 이동 속도가 빠른 물체를 추적하는 새로운 방법을 제안한다. 변형 가능한 형상을 가지는 이동 물체의 경계를 정확하게 추출하기 위해서는 윤곽점들의 국부적인 수렴 방향을 결정하는 것이 매우 중요하다. 이를 위해서, 차 영상 맵을 이용하는 방향성 에너지 항을 Greedy 알고리듬에 추가하여 능동 윤곽선 모델에서 이용되는 새로운 에너지 함수를 정의하였다. 부가적으로 윤곽점들을 안정적으로 수렴시키기 위하여 차 영상 맵의 갱신 규칙을 고안하였다. 실제 연속 영상을 이용한 실험 결과로부터 제안하는 방법은 불규칙하게 형태가 변하거나 이동 속도가 빠른 물체를 효과적으로 추적하는 동시에 그 물체의 경계선이 매 프레임마다 정확하게 추정됨을 보여 주었다.