• Title/Summary/Keyword: Local-feature

Search Result 939, Processing Time 0.023 seconds

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.

Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree (적응형 결정 트리를 이용한 국소 특징 기반 표정 인식)

  • Oh, Jihun;Ban, Yuseok;Lee, Injae;Ahn, Chunghyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.92-99
    • /
    • 2014
  • This paper proposes the method of facial expression recognition based on decision tree structure. In the image of facial expression, ASM(Active Shape Model) and LBP(Local Binary Pattern) make the local features of a facial expressions extracted. The discriminant features gotten from local features make the two facial expressions of all combination classified. Through the sum of true related to classification, the combination of facial expression and local region are decided. The integration of branch classifications generates decision tree. The facial expression recognition based on decision tree shows better recognition performance than the method which doesn't use that.

Image Identifier based on Local Feature's Histogram and Acceleration Technique using GPU (지역 특징 히스토그램 기반 영상식별자와 GPU 가속화)

  • Jeon, Hyeok-June;Seo, Yong-Seok;Hwang, Chi-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.889-897
    • /
    • 2010
  • Recently, a cutting-edge large-scale image database system has demanded these attributes: search with alarming speed, performs with high accuracy, archives efficiently and much more. An image identifier (descriptor) is for measuring the similarity of two images which plays an important role in this system. The extraction method of an image identifier can be roughly classified into two methods: a local and global method. In this paper, the proposed image identifier, LFH(Local Feature's Histogram), is obtained by a histogram of robust and distinctive local descriptors (features) constrained by a district sub-division of a local region. Furthermore, LFH has not only the properties of a local and global descriptor, but also can perform calculations at a magnificent clip to determine distance with pinpoint accuracy. Additionally, we suggested a way to extract LFH via GPU (OpenGL and GLSL). In this experiment, we have compared the LFH with SIFT (local method) and EHD (global method) via storage capacity, extraction and retrieval time along with accuracy.

Advanced Multistage Feature-based Classification Model (진보된 다단계 특징벡터 기반의 분류기 모델)

  • Kim, Jae-Young;Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.36-41
    • /
    • 2010
  • An advanced form of Multistage Feature-based Classification Model(AMFCM), called AMFCM, is proposed in this paper. AMFCM like MFCM does not use the concatenated form of available feature vectors extracted from original data to classify each data, but uses only groups related to each feature vector to classify separately. The prpposed AMFCM improves the contribution rate used in MFCM and proposes a confusion table for each local classifier using a specific feature vector group. The confusion table for each local classifier contains accuracy information of each local classifier on each class of data. The proposed AMFCM is applied to the problem of music genre classification on a set of music data. The results demonstrate that the proposed AMFCM outperforms MFCM by 8% - 15% on average in terms of classification accuracy depending on the grouping algorithms used for local classifiers and the number of clusters.

Face Detection for Interactive TV Control System in Near Infra-Red Images (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출)

  • Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.

CLASSIFIED ELGEN BLOCK: LOCAL FEATURE EXTRACTION AND IMAGE MATCHING ALGORITHM

  • Hochul Shin;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2108-2111
    • /
    • 2003
  • This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.

  • PDF

Optimal Feature Extraction for Multiclass Problems through Proper Choice of Initial Feature Vectors (초기 피춰벡터 설정을 통한 다중클래스 문제에 대한 최적 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.647-650
    • /
    • 1999
  • In this Paper, we propose an optimal feature extraction for multiclass problems through proper choice of initial feature vectors. Although numerous feature extraction algorithms have been proposed, those algorithms are not optimal for multiclass problems. Recently, an optimal feature extraction algorithm for multiclass problems has been proposed, which provides a better performance than the conventional feature extraction algorithms. In this paper, we improve the algorithm by choosing good initial feature vectors. As a result, the searching time is significantly reduced. The chance to be stuck in a local minimum is also reduced.

  • PDF

Face Recognition Using Local Statistics of Gradients and Correlations (그래디언트와 상관관계의 국부통계를 이용한 얼굴 인식)

  • Ju, Yingai;So, Hyun-Joo;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.19-29
    • /
    • 2011
  • Until now, many face recognition methods have been proposed, most of them use a 1-dimensional feature vector which is vectorized the input image without feature extraction process or input image itself is used as a feature matrix. It is known that the face recognition methods using raw image yield deteriorated performance in databases whose have severe illumination changes. In this paper, we propose a face recognition method using local statistics of gradients and correlations which are good for illumination changes. BDIP (block difference of inverse probabilities) is chosen as a local statistics of gradients and two types of BVLC (block variation of local correlation coefficients) is chosen as local statistics of correlations. When a input image enters the system, it extracts the BDIP, BVLC1 and BVLC2 feature images, fuses them, obtaining feature matrix by $(2D)^2$ PCA transformation, and classifies it with training feature matrix by nearest classifier. From experiment results of four face databases, FERET, Weizmann, Yale B, Yale, we can see that the proposed method is more reliable than other six methods in lighting and facial expression.

Feature Extraction Algorithm from Polygonal Model using Implicit Surface Fitting (음함수 곡면 맞춤을 이용한 다각형 모델로부터 특징 추출 알고리즘)

  • Kim, Soo-Kyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • This paper proposes a extraction of feature lines on a polygonal model using local implicit surface fitting technique. To extract feature lines on a polygonal model, the previous technique addressed to compute the curvature and their derivatives at mesh vertices via global implicit surface fitting. It needs a user-specified precision parameter for finding an accurate projection of the mesh vertices onto an approximating implicit surface and requires high-time consumption. But we use a local implicit surface fitting technique to estimate the local differential information near a vertex by means of an approximating surface. Feature vertices are easily detected as zero-crossings, and can then be connected along the direction of principal curvature. Our method, demonstrated on several large polygonal models, produces a good fit which leads to improved visualization.

  • PDF

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.