• Title/Summary/Keyword: Local web yielding

Search Result 8, Processing Time 0.02 seconds

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Maximum Crippling Load in Eccentrically Compressed rectangular Tubes (편심압축하중을 받는 사각튜브의 최대압괴하중)

  • 김천욱;한병기;정창현;김지홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

Seismic Response of Concrete Walls with Steel Boundary Elements (강재 경계요소를 갖는 콘크리트 벽체의 내진 성능)

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.290-297
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems associated with such a heavily reinforced region. Two wall specimens containing rectangular hollow structural sections(HSS) and channels at their ends respectively were constructed rectangular hollow structural sections(HSS) and channels ar their ends respectively were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. One companion standard reinforced concrete wall specimen was also tested for the comparison purpose At an Initial stage all three specimens were carefully detailed to have the approximately same flexural capacity. Analysis and comparison of test results indicated that the reversed cyclic responses of the three walls showed similar hysteretic properties but in those with steel boundaries local bucking of the corresponding steel elements following significant yielding of structural steel was prominent. Design procedures considering local instability of the structural steel elements and the interaction between steel chord and concrete web members in such composite walls are presented.

  • PDF

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF

Failure Behaviour and Shear Strength Equations of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 파괴거동과 전단강도 산정식)

Flexural Strength of HSB I-Girder Considering Inelastic Flange Local Buckling (압축플랜지 비탄성 국부좌굴을 고려한 HSB 플레이트거더의 휨강도)

  • Cho, Eun Young;Shin, Dong Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The ultimate flexural strength of HSB I-girders, considering the effect of local bucking, was investigated through a series of nonlinear finite element analysis. The girders were selected such that the inelastic local flange buckling or the plastic yielding of compression flanges governs the flexural strength. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web were modeled using thin shell elements and initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was used for steels. After establishing the validity of present FE analysis by comparing FE results with test results published in the literature, the effects of initial imperfection and residual stress on the inelastic flange local buckling behavior were assessed. The ultimate flexural strengths of 60 I-girders with various compression flange slenderness were obtained by FE analysis and compared with those calculated from the KHBDC, AASHTO LRFD and Eurocode 3 provisions. Based on the comparison, the applicability of design equations in these specifications for the flexural strength of I-girder considering flange local buckling was evaluated.

Resistance of Web-Separated Diagrid Nodes Subjected to Cyclic Loading (반복하중에 대한 웨브전이형 다이아그리드 노드의 구조적 특성)

  • Kim, Young Ju;Jung, In Yong;Ju, Young K.;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.257-266
    • /
    • 2009
  • The results of the analysis of the structural behavior of diagrid nodes that were subjected to cyclic loads such as wind and earthquakes was not fully understood due to difficulties in considering the welding type. In this study, diagrid nodes were tested to determine their behavior when they are subjected to seismic or wind loads. Five specimens were designed and fabricated. The corresponding test parameters were the welding type for each point and the length of the overlap of the side stiffener and the brace web. Tensile force was applied to one diagrid brace member, and compression force was applied to the other diagrid brace member. Cyclic loading was applied until the failure. The test showed that failures are due to axial stress from axial force and the additional bending moment of the two combined axial forces that have different directions. Tensile failure was observed from the tensile force, and local buckling was observed from the compressive force at the flange of the brace member. In addition, the welding type and the length overlap affected the initial stiffness, the yielding stress, and the energy absorption of the diagrid node.

A New Short Stem, Disease Resistance and High Yielding Peanut "Pungsan" (단경 내병 다수성 땅콩 품종 "풍산")

  • Pae, Suk-Bok;Cheong, Young-Keun;Park, Chang-Hwan;Lee, Myung-Hee;Hwang, Chung-Dong;Shim, Kang-Bo;Jung, Chan-Sik;Jung, Churl-Whan;Park, Keum-Yong;Park, Chung-Beam;Choi, Gyu-Hwan;Lee, Jae-Chul;Kim, In-Jae;Kim, Je-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.173-177
    • /
    • 2008
  • A new peanut variety "Pungsan" (Arachis hypogaea ssp. hypogaea L.) was developed at the Yeongnam Agricultural Research Institute, NICS, in Milyang in 2007. It was derived from a cross between a short stem cultivar "Satonoka" and a high-yielding local cultivar "Yecheon". "Pungsan" is the Virginia plant type. It has 18 branches per plant and 40 cm of main stem height. Each pod with long-ellipse shaped large kernel has two grains with light-brown testa and 100 seed weight was 95g in the regional yield trials (RYT). "Pungsan" showed more resistant to web blotch compared with check variety. In the regional yield trials "Pungsan" was outyielded in grain yield to the check variety by 16% with 4.45 MT/ha for grain.