• Title/Summary/Keyword: Local steering kernel

Search Result 2, Processing Time 0.013 seconds

A Modified Steering Kernel Filter for AWGN Removal based on Kernel Similarity

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.195-203
    • /
    • 2022
  • Noise generated during image acquisition and transmission can negatively impact the results of image processing applications, and noise removal is typically a part of image preprocessing. Denoising techniques combined with nonlocal techniques have received significant attention in recent years, owing to the development of sophisticated hardware and image processing algorithms, much attention has been paid to; however, this approach is relatively poor for edge preservation of fine image details. To address this limitation, the current study combined a steering kernel technique with adaptive masks that can adjust the size according to the noise intensity of an image. The algorithm sets the steering weight based on a similarity comparison, allowing it to respond to edge components more effectively. The proposed algorithm was compared with existing denoising algorithms using quantitative evaluation and enlarged images. The proposed algorithm exhibited good general denoising performance and better performance in edge area processing than existing non-local techniques.

Digital Filter Algorithm based on Local Steering Kernel and Block Matching in AWGN Environment (AWGN 환경에서 로컬 스티어링 커널과 블록매칭에 기반한 디지털 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.910-916
    • /
    • 2021
  • In modern society, various digital communication equipment is being used due to the influence of the 4th industrial revolution. Accordingly, interest in removing noise generated in a data transmission process is increasing, and research is being conducted to efficiently reconstruct an image. In this paper, we propose a filtering algorithm to remove the AWGN generated in the digital image transmission process. The proposed algorithm classifies pixels with high similarity by selecting regions with similar patterns around the input pixels according to block matching to remove the AWGN that appears strongly in the image. The selected pixel determines the estimated value by applying the weight obtained by the local steering kernel, and obtains the final output by adding or subtracting the input pixel value according to the standard deviation of the center mask. In order to evaluate the proposed algorithm, it was simulated with existing AWGN removal algorithms, and comparative analysis was performed using enlarged images and PSNR.