• 제목/요약/키워드: Local path control

검색결과 115건 처리시간 0.029초

스마트 폼을 이용한 덕트 내 넓은 영역에서의 소음 제어 및 상쇄 경로 최적화 (Active noise control in the global region of a duct using smart foam and FIR filter optimization of cancellation Path)

  • 한제헌;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.525-529
    • /
    • 2002
  • ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

  • PDF

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF

FEB를 이용한 이동로봇의 장애물 회피와 국지경로계획 (Obstacle Avoidance and Local Path Planning for Mobile Robots using the Fast Elastic Band)

  • 김일환
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.794-798
    • /
    • 2010
  • This paper presents a new obstacle-avoidance method for mobile robots. This approach, called the FEB (Fast Elastic Band) method, has been developed and successfully tested on the experimental mobile robot PHOPE-1S. The FEB method eliminates the shortcomings of the elastic band method previously introduced, yet retains all the advantages of its predecessor. The FEB algorithm is computationally efficient, and it allows continuous and fast motion of the mobile robot without stopping for obstacles. The FEB-controlled mobile robot traverses very densely cluttered obstacle courses and is able to pass through narrow openings or narrow corridors without oscillations. The results of the simulation and experiment have verified the validity of the proposed method.

레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘 (A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch)

  • 이문규;권기범
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

자율주행 자동차의 실 도로 차선 변경을 위한 장애물 검출 및 경로 계획에 관한 연구 (A Research of Obstacle Detection and Path Planning for Lane Change of Autonomous Vehicle in Urban Environment)

  • 오재석;임경일;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Recently, in automotive technology area, intelligent safety systems have been actively accomplished for drivers, passengers, and pedestrians. Also, many researches are focused on development of autonomous vehicles. This paper propose the application of LiDAR sensors, which takes major role in perceiving environment, terrain classification, obstacle data clustering method, and local map building for autonomous driving. Finally, based on these results, planning for lane change path that vehicle tracking possible were created and the reliability of path generation were experimented.

소형자동궤도차량 시스템의 그래프 모델 기반 수송능력 추정 (Traffic Capacity Estimate of Personal Rapid Transit System based on Digraph Model)

  • 원진명
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.263-267
    • /
    • 2007
  • This study proposes a new methodology to estimate the traffic capacity of a personal rapid transit(PRT) system. The proposed method comprises three steps. The first step models the guideway network(GN) of PRT as a digraph, where its node and link represent a station and a one-way guideway link between two stations, respectively. Given local vehicle control strategies, the second step formulates the local traffic capacities through the nodes and links of the GN model. The third step estimates the worst-case local traffic demands based on a shortest-path routing algorithm and an empty vehicle allocation algorithm. By comparing the traffic estimates to the local traffic capacities, we can determine the feasibility of the given GN in traffic capacity.

네트워크 연결성 유지를 위한 군집 로봇의 행동 제어 알고리즘 (Behavior Control Algorithm of Swarm Robots to Maintain Network Connectivity)

  • 김종선;정준영;지상훈;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1132-1137
    • /
    • 2013
  • In swarm robot systems, it is vital to maintain network connectivity to ensure cooperative behavior between robots. This paper deals with the behavior control algorithm of the swarm robots for maintaining network connectivity. To do this, we divide swarm robots into search-robots, base-robots, and relay-robots. Using these robots, we propose behavior control algorithm to maintain network connectivity. The behavior control algorithms to maintain network connectivity are proposed for the local path planning using virtual force and global path planning using the Delaunay triangulation, respectively. Finally, we demonstrate the effectiveness and applicability of the proposed method through some simulations.

무인비행체의 유사시 대안 경로 선택을 위한 DEVS 기반 디지털 트윈 시뮬레이션 환경 모델링 (DEVS-based Digital Twin Simulation Environment Modeling for Alternative Route Selection in Emergency Situations of Unnamed Aerial Vehicles)

  • 권보승;정상원;노영단;이종식;한영신
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1007-1021
    • /
    • 2022
  • Autonomous driving of unmanned aerial vehicles may have to pay expensive cost to create and switch new routes if unexpected obstacles exist or local map updates occured by the control system due to incorrect route information. Integrating digital twins into the path-following process requires more computing resources to quickly switch the wrong path to an alternative path, but it can quickly update the path during flight. In this study, we design a DEVS-based simulation environment which can modify optimized paths through short-term simulation of multi-virtual UAVs for applying digital twin concepts to path follow. Through simulation, we confirmed the possibility of increasing the mission stability of UAV.

Self-organizing Feature Map을 이용한 이동로봇의 전역 경로계획 (A Global Path Planning of Mobile Robot by Using Self-organizing Feature Map)

  • 강현규;차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.137-143
    • /
    • 2005
  • Autonomous mobile robot has an ability to navigate using both map in known environment and sensors for detecting obstacles in unknown environment. In general, autonomous mobile robot navigates by global path planning on the basis of already made map and local path planning on the basis of various kinds of sensors to avoid abrupt obstacles. This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.