• Title/Summary/Keyword: Local difference privacy

Search Result 2, Processing Time 0.014 seconds

Privacy-Preserving IoT Data Collection in Fog-Cloud Computing Environment

  • Lim, Jong-Hyun;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.43-49
    • /
    • 2019
  • Today, with the development of the internet of things, wearable devices related to personal health care have become widespread. Various global information and communication technology companies are developing various wearable health devices, which can collect personal health information such as heart rate, steps, and calories, using sensors built into the device. However, since individual health data includes sensitive information, the collection of irrelevant health data can lead to personal privacy issue. Therefore, there is a growing need to develop technology for collecting sensitive health data from wearable health devices, while preserving privacy. In recent years, local differential privacy (LDP), which enables sensitive data collection while preserving privacy, has attracted much attention. In this paper, we develop a technology for collecting vast amount of health data from a smartwatch device, which is one of popular wearable health devices, using local difference privacy. Experiment results with real data show that the proposed method is able to effectively collect sensitive health data from smartwatch users, while preserving privacy.

Privacy-Preserving Traffic Volume Estimation by Leveraging Local Differential Privacy

  • Oh, Yang-Taek;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.19-27
    • /
    • 2021
  • In this paper, we present a method for effectively predicting traffic volume based on vehicle location data that are collected by using LDP (Local Differential Privacy). The proposed solution in this paper consists of two phases: the process of collecting vehicle location data in a privacy-presering manner and the process of predicting traffic volume using the collected location data. In the first phase, the vehicle's location data is collected by using LDP to prevent privacy issues that may arise during the data collection process. LDP adds random noise to the original data when collecting data to prevent the data owner's sensitive information from being exposed to the outside. This allows the collection of vehicle location data, while preserving the driver's privacy. In the second phase, the traffic volume is predicted by applying deep learning techniques to the data collected in the first stage. Experimental results with real data sets demonstrate that the method proposed in this paper can effectively predict the traffic volume using the location data that are collected in a privacy-preserving manner.