• Title/Summary/Keyword: Local deterioration of Power Cable

Search Result 2, Processing Time 0.019 seconds

Electrical/Mechanical Diagnosis of Local Deterioration in 600V Shielded Twist Pair Cable in a Nuclear Power Plant (원전용 600V 차폐 꼬임쌍선 케이블의 국부열화에 대한 전기적/기계적 진단)

  • Park, Myeongkoo;Kim, Kwangho;Lim, Chanwoo;Kim, TaeYoon;Kim, Hyunsu;Chai, Jangbom;Kim, Byungsung;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose a electrical/mechanical method to effectively diagnose the local deterioration of a 10m long power shielded twist pair cable defined by the American Wire Gauge (AWG) 14 specification using electrical/mechanical methods. The rapid deterioration of the cable proceeded by using the heating furnace, which is based on the Arrhenius equations proceeds from 0 to 35 years with the deteriorated equivalent model. In this paper, we introduce a method to diagnose the characteristics of locally deteriorated cable by using $S_{21}$ phase and frequency change rate measured by vector network analyzer which is the electrical diagnostic method. The measured $S_{21}$ phase and rate of change of frequency show a constant correlation with the number of years of locally deteriorated cable, thus it can be useful for diagnosing deteriorated cables. The change of modulus due to deterioration was measured by a modulus measuring device, which is defined by the ratio of deformation from the force externally applied to the cable, and the rate of modulus change also shows a constant correlation with the number of years of locally deteriorated cable. Finally, By combining the advantages of electrical/mechanical diagnostic methods, we can efficiently diagnose the local deterioration in the power shielded cable.

A Study on the Fire Risk for Self-regulating Heating Cable (정온전선의 화재 위험성에 관한 연구)

  • Jung Hyun Lee;Si Hyun Kim;Ye Jin Park;Sin Dong Kang;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.7-13
    • /
    • 2024
  • This study examines the physical characteristics of self-regulating heating cables caused by increased temperature and fire risk due to local degradation. A thermo hygrostat system, a convection dryer, a digital multimeter (Agilent 34465 A), NI DAQ, and the LabVIEW program were used to assess the physical properties in response to temperature fluctuations. As the temperature increases, the resistance of the self-regulating heating cable increases; however, when the critical point is exceeded, the resistance sharply decreases. A problem arises when the resistance value cannot return to its original state even though the temperature is lowered to the initial state. Moreover, when the ambient temperature rises while power is applied, the resistance value initially increases, and the flowing current decreases, maintaining a constant state. However, when the critical temperature is exceeded, the flowing current increases because of a rapid decrease in the resistance value, progressing to ignition. When the resistance value decreases because of the deterioration of one local area, the total resistance value becomes less than the initial resistance value. Therefore, the flowing current increases and an ignition problem occurs at one location where deterioration occurs. Despite the sustained flames and arcs resulting from the changes in the overall physical properties of the self-regulating heating cable and resistance variations due to local decline, the fire continued as the flowing current was lower than the operating current of the circuit breaker, failing to cut the power. In the case of self-regulating heating cables and heating wires, which are the leading causes of fires in winter, efforts are needed to ensure the need for periodic maintenance and the use of KS-certified products.