• Title/Summary/Keyword: Local clustering

Search Result 341, Processing Time 0.023 seconds

Classification of Wind Sector in Pohang Region Using Similarity of Time-Series Wind Vectors (시계열 풍속벡터의 유사성을 이용한 포항지역 바람권역 분류)

  • Kim, Hyun-Goo;Kim, Jinsol;Kang, Yong-Heack;Park, Hyeong-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The local wind systems in the Pohang region were categorized into wind sectors. Still, thorough knowledge of wind resource assessment, wind environment analysis, and atmospheric environmental impact assessment was required since the region has outstanding wind resources, it is located on the path of typhoon, and it has large-scale atmospheric pollution sources. To overcome the resolution limitation of meteorological dataset and problems of categorization criteria of the preceding studies, the high-resolution wind resource map of the Korea Institute of Energy Research was used as time-series meteorological data; the 2-step method of determining the clustering coefficient through hierarchical clustering analysis and subsequently categorizing the wind sectors through non-hierarchical K-means clustering analysis was adopted. The similarity of normalized time-series wind vector was proposed as the Euclidean distance. The meteor-statistical characteristics of the mean vector wind distribution and meteorological variables of each wind sector were compared. The comparison confirmed significant differences among wind sectors according to the terrain elevation, mean wind speed, Weibull shape parameter, etc.

Adaptive Clustering based Sparse Representation for Image Denoising (적응 군집화 기반 희소 부호화에 의한 영상 잡음 제거)

  • Kim, Seehyun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.910-916
    • /
    • 2019
  • Non-local similarity of natural images is one of highly exploited features in various applications dealing with images. Unique edges, texture, and pattern of the images are frequently repeated over the entire image. Once the similar image blocks are classified into a cluster, representative features of the image blocks can be extracted from the cluster. The bigger the size of the cluster is the better the additive white noise can be separated. Denoising is one of major research topics in the image processing field suppressing the additive noise. In this paper, a denoising algorithm is proposed which first clusters the noisy image blocks based on similarity, extracts the feature of the cluster, and finally recovers the original image. Performance experiments with several images under various noise strengths show that the proposed algorithm recovers the details of the image such as edges, texture, and patterns while outperforming the previous methods in terms of PSNR in removing the additive Gaussian noise.

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Analysis of Temporal and Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 시계열적 공간분포특성 분석)

  • Sung, Byeong Jun;Bae, Gyu Han;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.3-9
    • /
    • 2015
  • Since changes in land use in urban space cause traffic volume and it is closely related to traffic accidents. Therefore, an analysis on the causes of traffic accidents is judged to be an essential factor to establish the measure to reduce traffic accidents. In this regard, the analysis was conducted on the clustering by using the nearest neighbor indexes with regard to the occurrence frequencies of commercial and residential zone based on traffic accident data of the past five years (2009-2013) with the target of local small-medium sized city, Jinju-si. The analysis results, obtained in this study, are as follows: the occurrence frequency of traffic accidents was the highest in spring and the lowest in winter respectively. The clustering of traffic accident occurrence at nighttime was stronger than at daytime. In addition, terms of the analysis on the clustering of traffic accident according to land use, changes according to the seasons was not significant in commercial areas, while clustering density in winter tended to become significantly lower in residential areas. The analysis results of traffic accident types showed that the side-right angle collision of cars was the highest in frequency occurrence, and widespread in both commercial areas and residential areas. These results can provide us with important information to identify the occurrence pattern of traffic accidents in the structure of urban space, and it is expected that they will be appropriately utilized to establish measures to reduce traffic accidents.

Spatial Influence on Acupoints Network Derived from the Chapter on Acupuncture & Moxibustion in "Beijiqianjinyaofang" ("비급천금요방(備急千金要方)" 침구편(鍼灸篇)으로 구성한 경혈(經穴) 네트워크에 공간적 위치 변수가 미치는 영향)

  • Kim, Min-Uk;Yang, Seung-Bum;Ahn, Seong-Hoon;Sohn, In-Chul;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.29 no.3
    • /
    • pp.431-440
    • /
    • 2012
  • Objectives : Recently, network science is very popular topic in various scientific fields and many studies have reported that it gives meaningful results on studying characteristics of a complex system. In this study, based on network theory, we made acupoints network using data of combined acupoints which appeared at "Beijiqianjinyaofang". We focused to find out the distinctive roles of remote and local combinations on the network. Furthermore, we aimed to identify the possibility of numerical and quantitative application to acupuncture researches. Methods : Based on examples of combined acupoints in "Beijiqianjinyaofang", the network consisted of 291 nodes and 2,431 links. The spatial distances between combined acupoints were calculated by the human dummy model. We removed the links step by step for the three cases - remote, local, and random cases, and observed the characteristic changes by calculating path lengths, similarity indices, and clustering coefficients. Also cluster analysis was carried out. Results : The network had a small number of remote links, and a large number of local links. These two links had the distinct characteristics. Whereas the local links formed a cluster of nearby nodes, remote links played a role to increase the correlation between the clusters. Conclusions : These results suggest that acupoints network increases the connectivity between the distal part and the trunk of human body, and enables various combinations of the acupoints. This finding conclusively showed that mechanism of combined acupoints could be interpreted meaningfully by applying network theory in acupuncture researches.

Human Action Recognition in Still Image Using Weighted Bag-of-Features and Ensemble Decision Trees (가중치 기반 Bag-of-Feature와 앙상블 결정 트리를 이용한 정지 영상에서의 인간 행동 인식)

  • Hong, June-Hyeok;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.

Analysis of Roadkill Hotspot According to the Spatial Clustering Methods (공간 군집지역 탐색방법에 따른 로드킬 다발구간 분석)

  • Song, Euigeun;Seo, Hyunjin;Kim, Kyungmin;Woo, Donggul;Park, Taejin;Choi, Taeyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.580-591
    • /
    • 2019
  • This study analyzed roadkill hotspots in Yeongju, Mungyeong-si Andong-si and Cheongsong-gun to compare the method of searching the area of the spatial cluster for selecting the roadkill hotspots. The local spatial autocorrelation index Getis-Ord Gi* statistics were calculated by different units of analysis, drawing hotspot areas of 9% from 300 m and 14% from 1 km on the basis of the total road area. The rating of Z-score in the 1km hotspot area showed the highest Z-score in the 28th National Road section on the border between Yecheon-gun and Yeongj-si. The kernel density method performed general kernel density estimation and network kernel density estimation analysis, both of which made it easier to visualize roadkill hotspots than district unit analysis, but there were limitations that it was difficult to determine statistically significant priority. As a result, local hotspot areas were found to be different according to the cluster analysis method, and areas that are in common need of reduction measures were found to be the hotspot of 28th National Road through Yeongju-si and Yecheon-gun. It is deemed that the results of this study can be used as basic data when identifying roadkill hotspots and establishing measures to reduce roadkill.

Visual Semantic Based 3D Video Retrieval System Using HDFS

  • Ranjith Kumar, C.;Suguna, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3806-3825
    • /
    • 2016
  • This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose we intent to hitch on BOVW and Mapreduce in 3D framework. Here, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and produce results .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we fiture the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

Genetic Diversity Measures of 8 Local Sheep Breeds in Northwest of China for Genetic Resource Conservation

  • Zeng, X.C.;Chen, H.Y.;Hui, W.Q.;Jia, B.;Du, Y.C.;Tian, Y.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1552-1556
    • /
    • 2010
  • The aim of this study was to evaluate, through the use of microsatellite markers, the current genetic diversity and the relationships of 375 individuals from 8 local sheep breeds reared in typical breeding farms in the northwest of China, and moreover, to offer a contribution towards genetic conservation decisions for the studied breeds. The expected heterozygosities and allelic richness for the 8 breeds varied from 0.474 to 0.623 and from 3.8 to 5.4, respectively. All the populations showed a significant deficit in heterozygosity and a relatively low level of genetic diversity. Furthermore, the high positive FIS value (ranging from 0.255 to 0.556) indicated inbreeding to be one of the main causes for high genetic homogeneity and lack of heterozygosity in all breeds. The clustering analysis performed with the DISPAN package showed that Aletai, Kazak, Bashibai and Bayinbuluke were grouped together, and Hetian, Qira black and Duolang were grouped together, which indicated that the relationship among breeds displayed some degree of consistency with their geographical distribution, production and origin. These findings indicate that improved conservation measures must be undertaken to avoid further losses of genetic diversity and minimize inbreeding represented by these breeds.

Energy-Efficient Adaptive Dynamic Sensor Scheduling for Target Monitoring in Wireless Sensor Networks

  • Zhang, Jian;Wu, Cheng-Dong;Zhang, Yun-Zhou;Ji, Peng
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.857-863
    • /
    • 2011
  • Due to uncertainties in target motion and randomness of deployed sensor nodes, the problem of imbalance of energy consumption arises from sensor scheduling. This paper presents an energy-efficient adaptive sensor scheduling for a target monitoring algorithm in a local monitoring region of wireless sensor networks. Owing to excessive scheduling of an individual node, one node with a high value generated by a decision function is preferentially selected as a tasking node to balance the local energy consumption of a dynamic clustering, and the node with the highest value is chosen as the cluster head. Others with lower ones are in reserve. In addition, an optimization problem is derived to satisfy the problem of sensor scheduling subject to the joint detection probability for tasking sensors. Particles of the target in particle filter algorithm are resampled for a higher tracking accuracy. Simulation results show this algorithm can improve the required tracking accuracy, and nodes are efficiently scheduled. Hence, there is a 41.67% savings in energy consumption.