• Title/Summary/Keyword: Local clustering

Search Result 341, Processing Time 0.03 seconds

Seabed Sediment Classification Algorithm using Continuous Wavelet Transform

  • Lee, Kibae;Bae, Jinho;Lee, Chong Hyun;Kim, Juho;Lee, Jaeil;Cho, Jung Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 2016
  • In this paper, we propose novel seabed sediment classification algorithm using feature obtained by continuous wavelet transform (CWT). Contrast to previous researches using direct reflection coefficient of seabed which is function of frequency and is highly influenced by sediment types, we develop an algorithm using both direct reflection signal and backscattering signal. In order to obtain feature vector, we employ CWT of the signal and obtain histograms extracted from local binary patterns of the scalogram. The proposed algorithm also adopts principal component analysis (PCA) to reduce dimension of the feature vector so that it requires low computational cost to classify seabed sediment. For training and classification, we adopts K-means clustering algorithm which can be done with low computational cost and does not require prior information of the sediment. To verify the proposed algorithm, we obtain field data measured at near Jeju island and show that the proposed classification algorithm has reliable discrimination performance by comparing the classification results with actual physical properties of the sediments.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

A new Design of Granular-oriented Self-organizing Polynomial Neural Networks (입자화 중심 자기구성 다항식 신경 회로망의 새로운 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.312-320
    • /
    • 2012
  • In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).

Robust k-means Clustering-based High-speed Barcode Decoding Method to Blur and Illumination Variation (블러와 조명 변화에 강인한 k-means 클러스터링 기반 고속 바코드 정보 추출 방법)

  • Kim, Geun-Jun;Cho, Hosang;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper presents Robust k-means clustering-based high-speed bar code decoding method to blur and lighting. for fast operation speed and robust decoding to blur, proposed method uses adaptive local threshold binarization methods that calculate threshold value by dividing blur region and a non-blurred region. Also, in order to prevent decoding fail from the noise, decoder based on k-means clustering algorithm is implemented using area data summed pixel width line of the same number of element. Results of simulation using samples taken at various worst case environment, the average success rate of proposed method is 98.47%. it showed the highest decoding success rate among the three comparison programs.

Binary Visual Word Generation Techniques for A Fast Image Search (고속 이미지 검색을 위한 2진 시각 단어 생성 기법)

  • Lee, Suwon
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1313-1318
    • /
    • 2017
  • Aggregating local features in a single vector is a fundamental problem in an image search. In this process, the image search process can be speeded up if binary features which are extracted almost two order of magnitude faster than gradient-based features are utilized. However, in order to utilize the binary features in an image search, it is necessary to study the techniques for clustering binary features to generate binary visual words. This investigation is necessary because traditional clustering techniques for gradient-based features are not compatible with binary features. To this end, this paper studies the techniques for clustering binary features for the purpose of generating binary visual words. Through experiments, we analyze the trade-off between the accuracy and computational efficiency of an image search using binary features, and we then compare the proposed techniques. This research is expected to be applied to mobile applications, real-time applications, and web scale applications that require a fast image search.

Analysis of Radioactive Contamination Normal Level of Numerical Isotope using Clustering Methods (클러스터링 방법을 이용한 방사능 정상수치의 동위원소별 오염 분석)

  • Jung, Yong-Gyu;Choi, Jung-Ah;Cha, Byung-Heun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • As the radioactive-related incidents have been occurred frequently such as Fukushima nuclear exposure incident, it is always considered radioactivity normal levels in radiation exposure as a most risk components at several government agencies. In this paper, the data were analyzed by information in the data beyond range of the attributes. The clustering analysis method is used by EM and SimpleKMeans algorithm. The experimental results about US Radioactive associated data is depending on the method of data analysis. It can be seen that the method of the algorithm is different depending on local value of the normal range. The governments need to pay attention to increase the investigation frequency.

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • Park, Min-Jae;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-17
    • /
    • 2003
  • Optimal determination of cluster size has an effect on the result of clustering. In K-means algorithm, the difference of clustering performance is large by initial K. But the initial cluster size is determined by prior knowledge or subjectivity in most clustering process. This subjective determination may not be optimal. In this Paper, the genetic algorithm based optimal determination approach of cluster size is proposed for automatic determination of cluster size and performance upgrading of its result. The initial population based on attribution is generated for searching optimal cluster size. The fitness value is defined the inverse of dissimilarity summation. So this is converged to upgraded total performance. The mutation operation is used for local minima problem. Finally, the re-sampling of bootstrapping is used for computational time cost.

D2D Based Advertisement Dissemination Using Expectation Maximization Clustering (기대최대화 기반 사용자 클러스터링을 통한 D2D 광고 확산)

  • Kim, Junseon;Lee, Howon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.992-998
    • /
    • 2017
  • For local advertising based on D2D communications, sources want advertisement messages to be diffused to unspecified users as many as possible. It is one of challenging issues to select target-areas for advertising if users are uniformly distributed. In this paper, we propose D2D based advertisement dissemination algorithm using user clustering with expectation-maximization. The user distribution of each cluster can be estimated by principal components (PCs) obtained from each cluster. That is, PCs enable the target-areas and routing paths to be properly determined according to the user distribution. Consequently, advertisement messages are able to be disseminated to many users. We evaluate performances of our proposed algorithm with respect to coverage probability and average reception number per user.

Term Clustering and Duplicate Distribution for Efficient Parallel Information Retrieval (효율적인 병렬정보검색을 위한 색인어 군집화 및 분산저장 기법)

  • 강재호;양재완;정성원;류광렬;권혁철;정상화
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.129-139
    • /
    • 2003
  • The PC cluster architecture is considered as a cost-effective alternative to the existing supercomputers for realizing a high-performance information retrieval (IR) system. To implement an efficient IR system on a PC cluster, it is essential to achieve maximum parallelism by having the data appropriately distributed to the local hard disks of the PCs in such a way that the disk I/O and the subsequent computation are distributed as evenly as possible to all the PCs. If the terms in the inverted index file can be classified to closely related clusters, the parallelism can be maximized by distributing them to the PCs in an interleaved manner. One of the goals of this research is the development of methods for automatically clustering the terms based on the likelihood of the terms' co-occurrence in the same query. Also, in this paper, we propose a method for duplicate distribution of inverted index records among the PCs to achieve fault-tolerance as well as dynamic load balancing. Experiments with a large corpus revealed the efficiency and effectiveness of our method.

Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy (라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계)

  • Kim, Eun-Hu;Bae, Jong-Soo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.