• Title/Summary/Keyword: Local binary pattern

Search Result 120, Processing Time 0.02 seconds

Selective Incremental Learning for Face Tracking Using Staggered Multi-Scale LBP (얼굴 추적에서의 Staggered Multi-Scale LBP를 사용한 선택적인 점진 학습)

  • Lee, Yonggeol;Choi, Sang-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.115-123
    • /
    • 2015
  • The incremental learning method performs well in face face tracking. However, it has a drawback in that it is sensitive to the tracking error in the previous frame due to the environmental changes. In this paper, we propose a selective incremental learning method to track a face more reliably under various conditions. The proposed method is robust to illumination variation by using the LBP(Local Binary Pattern) features for each individual frame. We select patches to be used in incremental learning by using Staggered Multi-Scale LBP, which prevents the propagation of tracking errors occurred in the previous frame. The experimental results show that the proposed method improves the face tracking performance on the videos with environmental changes such as illumination variation.

Hardware Design of LBP Operation for Real-time Face Detection of HD Images (HD 영상의 실시간 얼굴 검출을 위한 LBP 연산의 하드웨어 설계)

  • Noh, Hyun-Jin;Kim, Tae-Wan;Chung, Yum-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.67-71
    • /
    • 2011
  • Existing face detection systems, which are used for digital door locks, digital cameras, video surveillance systems, and so on, are software-based implementation for relatively low level resolution images. Therefore, in this case, there are difficulties in detecting faces in a real-time fashion due to the increasing amount of operational processing as well as in allowing the requirements of face detections for HD(High Definition) resolutions. A hardware approach is necessary to efficiently find faces for HD images in real-time embedded systems. This paper proposes and implements a hardware architecture for an LBP(Local Binary Pattern) operation which is a time-consuming part as one of preprocessing steps for face detection. The hardware architecture proposed in this research has been implemented and tested with a FPGA(Field Programmable Gate Array) chip, and shown that the approach guarantees efficient face detection for HD images.

Implementation of a Face Authentication Embedded System Using High-dimensional Local Binary Pattern Descriptor and Joint Bayesian Algorithm (고차원 국부이진패턴과 결합베이시안 알고리즘을 이용한 얼굴인증 임베디드 시스템 구현)

  • Kim, Dongju;Lee, Seungik;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1674-1680
    • /
    • 2017
  • In this paper, an embedded system for face authentication, which exploits high-dimensional local binary pattern (LBP) descriptor and joint Bayesian algorithm, is proposed. We also present a feasible embedded system for the proposed algorithm implemented with a Raspberry Pi 3 model B. Computer simulation for performance evaluation of the presented face authentication algorithm is carried out using a face database of 500 persons. The face data of a person consist of 2 images, one for training and the other for test. As performance measures, we exploit score distribution and face authentication time with respect to the dimensions of principal component analysis (PCA). As a result, it is confirmed that an embedded system having a good face authentication performance can be implemented with a relatively low cost under an optimized embedded environment.

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

Face Recognition using 2D-PCA and Image Partition (2D - PCA와 영상분할을 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.

LBP and DWT Based Fragile Watermarking for Image Authentication

  • Wang, Chengyou;Zhang, Heng;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.666-679
    • /
    • 2018
  • The discrete wavelet transform (DWT) has good multi-resolution decomposition characteristic and its low frequency component contains the basic information of an image. Based on this, a fragile watermarking using the local binary pattern (LBP) and DWT is proposed for image authentication. In this method, the LBP pattern of low frequency wavelet coefficients is adopted as a feature watermark, and it is inserted into the least significant bit (LSB) of the maximum pixel value in each block of host image. To guarantee the safety of the proposed algorithm, the logistic map is applied to encrypt the watermark. In addition, the locations of the maximum pixel values are stored in advance, which will be used to extract watermark on the receiving side. Due to the use of DWT, the watermarked image generated by the proposed scheme has high visual quality. Compared with other state-of-the-art watermarking methods, experimental results manifest that the proposed algorithm not only has lower watermark payloads, but also achieves good performance in tamper identification and localization for various attacks.

Smoke detection in video sequences based on dynamic texture using volume local binary patterns

  • Lin, Gaohua;Zhang, Yongming;Zhang, Qixing;Jia, Yang;Xu, Gao;Wang, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5522-5536
    • /
    • 2017
  • In this paper, a video based smoke detection method using dynamic texture feature extraction with volume local binary patterns is studied. Block based method was used to distinguish smoke frames in high definition videos obtained by experiments firstly. Then we propose a method that directly extracts dynamic texture features based on irregular motion regions to reduce adverse impacts of block size and motion area ratio threshold. Several general volume local binary patterns were used to extract dynamic texture, including LBPTOP, VLBP, CLBPTOP and CVLBP, to study the effect of the number of sample points, frame interval and modes of the operator on smoke detection. Support vector machine was used as the classifier for dynamic texture features. The results show that dynamic texture is a reliable clue for video based smoke detection. It is generally conducive to reducing the false alarm rate by increasing the dimension of the feature vector. However, it does not always contribute to the improvement of the detection rate. Additionally, it is found that the feature computing time is not directly related to the vector dimension in our experiments, which is important for the realization of real-time detection.

Real-time Traffic Sign Recognition using Rotation-invariant Fast Binary Patterns (회전에 강인한 고속 이진패턴을 이용한 실시간 교통 신호 표지판 인식)

  • Hwang, Min-Chul;Ko, Byoung Chul;Nam, Jae-Yeal
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 2016
  • In this paper, we focus on recognition of speed-limit signs among a few types of traffic signs because speed-limit sign is closely related to safe driving of drivers. Although histogram of oriented gradient (HOG) and local binary patterns (LBP) are representative features for object recognition, these features have a weakness with respect to rotation, in that it does not consider the rotation of the target object when generating patterns. Therefore, this paper propose the fast rotation-invariant binary patterns (FRIBP) algorithm to generate a binary pattern that is robust against rotation. The proposed FRIBP algorithm deletes an unused layer of the histogram, and eliminates the shift and comparison operations in order to quickly extract the desired feature. The proposed FRIBP algorithm is successfully applied to German Traffic Sign Recognition Benchmark (GTSRB) datasets, and the results show that the recognition capabilities of the proposed method are similar to those of other methods. Moreover, its recognition speed is considerably enhanced than related works as approximately 0.47second for 12,630 test data.

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.