• Title/Summary/Keyword: Local Updating

Search Result 86, Processing Time 0.025 seconds

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System (Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

Optimal solution search method by using modified local updating rule in ACS-subpath algorithm (부경로를 이용한 ACS 탐색에서 수정된 지역갱신규칙을 이용한 최적해 탐색 기법)

  • Hong, SeokMi;Lee, Seung-Gwan
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.443-448
    • /
    • 2013
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the total frequency of visits of the currently selected node in the previous iteration. I used the ACS algoritm using subpath for search. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

FE model updating based on hybrid genetic algorithm and its verification on numerical bridge model

  • Jung, Dae-Sung;Kim, Chul-Young
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.667-683
    • /
    • 2009
  • FE model-based dynamic analysis has been widely used to predict the dynamic characteristics of civil structures. In a physical point of view, an FE model is unavoidably different from the actual structure as being formulated based on extremely idealized engineering drawings and design data. The conventional model updating methods such as direct method and sensitivity-based parameter estimation are not flexible for model updating of complex and large structures. Thus, it is needed to develop a model updating method applicable to complex structures without restriction. The main objective of this paper is to present the model updating method based on the hybrid genetic algorithm (HGA) by combining the genetic algorithm as global optimization method and modified Nelder-Mead's Simplex method as local optimization method. This FE model updating method using HGA does not need the derivation of derivative function related to parameters and without application of complicated inverse analysis methods. In order to allow its application on diversified and complex structures, a commercial FEA tool is adopted to exploit previously developed element library and analysis algorithms. Moreover, an output-level objective function making use of measurement and analytical results is also presented to update simultaneously the stiffness and mass of the analysis model. The numerical examples demonstrated that the proposed method based on HGA is effective for the updating of the FE model of bridge structures.

Structural damage detection including the temperature difference based on response sensitivity analysis

  • Wei, J.J.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • Damage detection based on a reference set of measured data usually has the problem of different environmental temperature in the two sets of measurements, and the effect of temperature difference is usually ignored in the subsequent model updating. This paper attempts to identify the structural damage including the temperature difference with artificial measurement noise. Both local damages and the temperature difference are identified in a gradient-based model updating method based on dynamic response sensitivity. The sensitivities of dynamic response with respect to the system parameters and temperature difference are calculated by direct integration method. The measured dynamic responses of the structure from two different states are used directly to identify the structural local damages and the temperature difference. A single degree-of-freedom mass-spring system and a planar truss structure are studied to illustrate the effectiveness of the proposed method.

A Proposal of Model Updating Method for Steel Frame Using Global/Local Responses (전역적/국부 응답을 이용한 철골조의 모델 업데이팅 기법 제안)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2015
  • Conventional model updating methods for the structures have used global structural responses which are modal parameters obtained through vibration measurements. Although models updated by modal parameters estimate global structural responses accurately, they have difficulties to predict local responses for safety assesment of structural members. The safety of structural members in the structures has been evaluated through the stress estimation based on strain measurements. Thus, this study additionally uses measured strain responses of structural members to perform model updating besides modal parameters. In the proposed method, the objective functions are set to the differences of the global and local responses obtained from updated model and measurement and those functions are minimized by NSGA-II, one of the multi-objective optimization techniques. The strain responses predicted from updated model are used for safety assessment of the steel frame structures. The proposed method are verified by numerical and experimental studies through the impact hammer tests for a steel frame specimen.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

CMAC Neuro-Fuzzy Design for Color Calibration (컬러재현을 위한 CMAC의 뉴로퍼지 설계)

  • 이철희;변오성;문성룡;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.97-100
    • /
    • 2001
  • CMAC model was proposed by Albus [6] to formulate the processing characteristics of the human cerebellum. Instead of the global weight updating scheme used in the back propagation, CMAC use the local weight updating scheme. Therefore, CMAC have the advantage of fast learning and high convergence rate. In this paper, simulate Color Calibration by CMAC in color images and design hardware by VHDL-base high-level synthesis.

  • PDF

An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem (Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구)

  • Jung, Tae-Ung;Lee, Sung-Gwan;Jung, Tae-Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF