• Title/Summary/Keyword: Local Search Methods

Search Result 219, Processing Time 0.025 seconds

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.69-76
    • /
    • 2022
  • The traveling salesman problem(TSP) is one of the most famous combinatorial optimization problem. So far, many metaheuristic search algorithms have been proposed to solve the problem, and one of them is local search. One of the very important factors in local search is neighbor generation method, and random-based neighbor generation methods such as inversion have been mainly used. This paper proposes 4 new greedy-based neighbor generation methods. Three of them are based on greedy insertion heuristic which insert selected cities one by one into the current best position. The other one is based on greedy rotation. The proposed methods are applied to first-choice hill-climbing search and simulated annealing which are representative local search algorithms. Through the experiment, we confirmed that the proposed greedy-based methods outperform the existing random-based methods. In addition, we confirmed that some greedy-based methods are superior to the existing local search methods.

Likelihood search method with variable division search

  • Koga, Masaru;Hirasawa, Kotaro;Murata, Junichi;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.14-17
    • /
    • 1995
  • Various methods and techniques have been proposed for solving optimization problems; the methods have been applied to various practical problems. However the methods have demerits. The demerits which should be covered are, for example, falling into local minima, or, a slow convergence speed to optimal points. In this paper, Likelihood Search Method (L.S.M.) is proposed for searching for a global optimum systematically and effectively in a single framework, which is not a combination of different methods. The L.S.M. is a sort of a random search method (R.S.M.) and thus can get out of local minima. However exploitation of gradient information makes the L.S.M. superior in convergence speed to the commonly used R.S.M..

  • PDF

An Iterative Local Search Algorithm for Rural Postman Problems (Rural Postman Problem 해법을 위한 Iterative Local Search 알고리즘)

  • 강명주
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • This paper Proposes an iterative Local Search (ILS) algorithm for Rural Postman Problems (RPPs). LS searches neighbors from an initial solution in solution space and obtains a nearoptimal solution which can be a local-minima. As an extension of LS, the ILS algorithm is a method that uses various initial solutions for LS. Hence. ILS can overcome the defect of LS. This paper proposes LS and ILS methods for 18 RPPs and analyzes the results of LS and ILS. In the simulation results, the ILS method obtained the better results than the LS method.

  • PDF

MOTION VECTOR DETECTION ALGORITHM USING THE STEEPEST DESCENT METHOD EFFECTIVE FOR AVOIDING LOCAL SOLUTIONS

  • Konno, Yoshinori;Kasezawa, Tadashi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.460-465
    • /
    • 2009
  • This paper presents a new algorithm that includes a mechanism to avoid local solutions in a motion vector detection method that uses the steepest descent method. Two different implementations of the algorithm are demonstrated using two major search methods for tree structures, depth first search and breadth first search. Furthermore, it is shown that by avoiding local solutions, both of these implementations are able to obtain smaller prediction errors compared to conventional motion vector detection methods using the steepest descent method, and are able to perform motion vector detection within an arbitrary upper limit on the number of computations. The effects that differences in the search order have on the effectiveness of avoiding local solutions are also presented.

  • PDF

Robust Visual Tracking using Search Area Estimation and Multi-channel Local Edge Pattern

  • Kim, Eun-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.47-54
    • /
    • 2017
  • Recently, correlation filter based trackers have shown excellent tracking performance and computational efficiency. In order to enhance tracking performance in the correlation filter based tracker, search area which is image patch for finding target must include target. In this paper, two methods to discriminatively represent target in the search area are proposed. Firstly, search area location is estimated using pyramidal Lucas-Kanade algorithm. By estimating search area location before filtering, fast motion target can be included in the search area. Secondly, we investigate multi-channel Local Edge Pattern(LEP) which is insensitive to illumination and noise variation. Qualitative and quantitative experiments are performed with eight dataset, which includes ground truth. In comparison with method without search area estimation, our approach retain tracking for the fast motion target. Additionally, the proposed multi-channel LEP improves discriminative performance compare to existing features.

타부탐색(Tabu Search)의 확장모델을 이용한 '외판원 문제(Traveling Salesman Problem)' 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.135-138
    • /
    • 1996
  • In solving the Travel Salesman Problem(TSP), we easily reach local optimal solutions with the existing methods such as TWO-OPT, THREE-OPT, and Lin-Kernighen. Tabu search, as a meta heuristic, is a good mechanism to get an optimal or a near optimal solution escaping from the local optimal. By utilizing AI concepts, tabu search continues to search for improved solutions. In this study, we focus on developing a new neighborhood structure that maintains the feasibility of the tours created by exchange operations in TSP. Intelligent methods are discussed, which keeps feasible tour routes even after exchanging several edges continuously. An extended tabu search model, performing cycle detection and diversification with memory structure, is applied to TSP. The model uses effectively the information gathered during the search process. Finally, the results of tabu search and simulated annealing are compared based on the TSP problems in the prior literatures.

  • PDF

Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks (진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

A Heuristic Search Planner Based on Component Services (컴포넌트 서비스 기반의 휴리스틱 탐색 계획기)

  • Kim, In-Cheol;Shin, Hang-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.159-170
    • /
    • 2008
  • Nowadays, one of the important functionalities required from robot task planners is to generate plans to compose existing component services into a new service. In this paper, we introduce the design and implementation of a heuristic search planner, JPLAN, as a kernel module for component service composition. JPLAN uses a local search algorithm and planning graph heuristics. The local search algorithm, EHC+, is an extended version of the Enforced Hill-Climbing(EHC) which have shown high efficiency applied in state-space planners including FF. It requires some amount of additional local search, but it is expected to reduce overall amount of search to arrive at a goal state and get shorter plans. We also present some effective heuristic extraction methods which are necessarily needed for search on a large state-space. The heuristic extraction methods utilize planning graphs that have been first used for plan generation in Graphplan. We introduce some planning graph heuristics and then analyze their effects on plan generation through experiments.

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.

A Study on the Convergence of the Evolution Strategies based on Learning (학습에의한 진화전략의 수렴성에 관한연구)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.650-656
    • /
    • 1999
  • In this paper, we study on the convergence of the evolution strategies by introducing the Lamarckian evolution and the Baldwin effect, and propose a random local searching and a reinforcement local searching methods. In the random local searching method some neighbors generated randomly from each individual are med without any other information, but in the reinforcement local searching method the previous results of the local search are reflected on the current local search. From the viewpoint of the purpose of the local search it is suitable that we try all the neighbors of the best individual and then search the neighbors of the best one of them repeatedly. Since the reinforcement local searching method based on the Lamarckian evolution and Baldwin effect does not search neighbors randomly, but searches the neighbors in the direction of the better fitness, it has advantages of fast convergence and an improvement on the global searching capability. In other words the performance of the evolution strategies is improved by introducing the learning, reinforcement local search, into the evolution. We study on the learning effect on evolution strategies by applying the proposed method to various function optimization problems.

  • PDF