• Title/Summary/Keyword: Local Search Method

Search Result 443, Processing Time 0.035 seconds

Real-Time Tracking for Moving Object using Neural Networks (신경망을 이용한 이동성 칼라 물체의 실시간 추적)

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2358-2361
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks which have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, this paper first has a global search of entire image and tracks the object through local search when the object is recognized.

  • PDF

Multi-objective topology and geometry optimization of statically determinate beams

  • Kozikowska, Agata
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.367-380
    • /
    • 2019
  • The paper concerns topology and geometry optimization of statically determinate beams with arbitrary number of supports. The optimization problem is treated as a bi-criteria one, with the objectives of minimizing the absolute maximum bending moment and the maximum deflection for a uniform gravity load. The problem is formulated and solved using the Pareto optimality concept and the lexicographic ordering of the objectives. The non-dominated sorting genetic algorithm NSGA-II and the local search method are used for the optimization in the Pareto sense, whereas the genetic algorithm and the exhaustive search method for the lexicographic optimization. Trade-offs between objectives are examined and sets of Pareto-optimal solutions are provided for different topologies. Lexicographically optimal beams are found assuming that the maximum moment is a more important criterion. Exact formulas for locations and values of the maximum deflection are given for all lexicographically optimal beams of any topology and any number of supports. Topologies with lexicographically optimal geometries are classified into equivalence classes, and specific features of these classes are discussed. A qualitative principle of the division of topologies equivalent in terms of the maximum moment into topologies better and worse in terms of the maximum deflection is found.

An Evolutionary Algorithm preventing Consanguineous Marriage

  • Woojin Oh;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.110.2-110
    • /
    • 2002
  • Evolutionary Algorithm is the general method that can search the optimum value for the various problems. Evolutionary method consists of random selection, crossover, mutation, etc. Since the next generation is selected based on the fitness values, the crossover between chromosomes does not have any restrictions. Not only normal marriage but also consanguineous marriage will take place. In human world, consanguineous marriage was reported to cause various genetic defects, such as poor immunity about new diseases and new environment disaster, These problems translate into searching for the local optimum, not the global optimum. So, a new evolutionary algorithm is needed that prevents traps to...

  • PDF

실시간 사분트리 방식에 기초한 이동로봇의 경로계획

  • 강승준;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.17-17
    • /
    • 2004
  • 자율 이동로봇은 현재 각광을 받고 있는 서비스로봇의 연구와 더불어 활발히 연구되고 있다. 그 중 경로계획 부분에 대한 연구는 Roadmap Method, Cell Decomposition, Potential Field Method로 크게 구분하여 연구되고 있다. 그러나 경로계획 기법에 있어서 기존의 정형화된 방법 이외에 다른 방법들이 제시 되지 않고 있다. 기존 경로계측의 문제점들은 다음과 같다. 국부최소(local minimum)를 회피하지 못하거나, 많은 계산량으로 인해 넓은 범위에 적용시킬 수 없다는 문제점, 오프라인으로 경로의 최적성에만 치중하여 실시간으로 적용하기가 쉽지 않으며, 돌발적인 상황에 대처하기 어렵다는 문제점 등을 가지고 있다.(중략)

  • PDF

Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves (Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구)

  • 양보석;신광재;최원호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • A neural network with one or more layers of hidden units can be trained using the well-known error back propagation algorithm. According to this algorithm, the synaptic weights of the network are updated during the training by propagating back the error between the expected output and the output provided by the network. However, the error back propagation algorithm is characterized by slow convergence and the time required for training and, in some situation, can be trapped in local minima. A theoretical formulation of a new fast learning method based on tabu search method is presented in this paper. In contrast to the conventional back propagation algorithm which is based solely on the modification of connecting weights of the network by trial and error, the present method involves the calculation of the optimum weights of neural network. The effectiveness and versatility of the present method are verified by the XOR problem. The present method excels in accuracy compared to that of the conventional method of fixed values.

  • PDF

Ontology-based Culture·Tourist Attraction Search Application (온톨로지 기반의 문화·관광지 검색 어플리케이션 구현)

  • Hwang, Tae-won;Seo, Jung-hee;Park, Hung-bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.772-774
    • /
    • 2017
  • Currently, there are many simple searches for local culture and tourism, but systematic information retrieval using ontology technology is weak. The keyword-based search, which is an existing search method, derives a search result that is different from a user's wanted intention. On the other hand, semantic search using ontology constructs shows the information related to the search term by creating a relation between words and words. Therefore, when tourists search for cultural and tourist attractions in the area, they provide information that includes meaning relevance in the search results. If the ontology provides information on the culture, sightseeing area, transportation, Can be more easily grasped. In this paper, we propose an ontology-based retrieval system based on culture and tourist sites utilizing public institutions database by using mobile application by extending search system which relied only on existing internal database to provide accurate and reliable information to users. This efficient structure of the ontology makes it possible to provide information suitable for the user quickly and accurately.

  • PDF

Matching Method between Heterogeneous Data for Semantic Search (시맨틱 검색을 위한 이기종 데이터간의 매칭방법)

  • Lee, Ki-Jung;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.25-33
    • /
    • 2006
  • For semantic retrieval in semantic web environment, it is an important factor to manage and manipulate distributed resources. Ontology is essential for efficient search in distributed resources, but it is almost impossible to construct an unified ontology for all distributed resources in the web. In this paper, we assumed that most information in the web environment exist in the form of RDBMS, and propose a matching method between domain ontology and the existing RDBMS tables for semantic retrieval. Most previous studies about matching between RDBMS tables and domain ontology have extracted a local ontology from RDBMS tables at first, and conducted the matching between the local ontology and domain ontology. However in the processing of extracting a local ontology, some problems such as losing domain information can be occurred since its correlation with domain ontology has not been considered at all. In this paper, we propose a methods to prevent the loss of domain information through the similarity measure between instances of RDBMS tables and instances of ontology. And using the relational information between RDBMS tables and the relational information between classes in domain ontology, more efficient instance-based matching becomes possible.

  • PDF

Improvements of pursuit performance using episodic parameter optimization in probabilistic games (에피소드 매개변수 최적화를 이용한 확률게임에서의 추적정책 성능 향상)

  • Kwak, Dong-Jun;Kim, H.-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.215-221
    • /
    • 2012
  • In this paper, we introduce an optimization method to improve pursuit performance of a pursuer in a pursuit-evasion game (PEG). Pursuers build a probability map and employ a hybrid pursuit policy which combines the merits of local-max and global-max pursuit policies to search and capture evaders as soon as possible in a 2-dimensional space. We propose an episodic parameter optimization (EPO) algorithm to learn good values for the weighting parameters of a hybrid pursuit policy. The EPO algorithm is performed while many episodes of the PEG are run repeatedly and the reward of each episode is accumulated using reinforcement learning, and the candidate weighting parameter is selected in a way that maximizes the total averaged reward by using the golden section search method. We found the best pursuit policy in various situations which are the different number of evaders and the different size of spaces and analyzed results.

HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery (운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

Surf points based Moving Target Detection and Long-term Tracking in Aerial Videos

  • Zhu, Juan-juan;Sun, Wei;Guo, Bao-long;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5624-5638
    • /
    • 2016
  • A novel method based on Surf points is proposed to detect and lock-track single ground target in aerial videos. Videos captured by moving cameras contain complex motions, which bring difficulty in moving object detection. Our approach contains three parts: moving target template detection, search area estimation and target tracking. Global motion estimation and compensation are first made by grids-sampling Surf points selecting and matching. And then, the single ground target is detected by joint spatial-temporal information processing. The temporal process is made by calculating difference between compensated reference and current image and the spatial process is implementing morphological operations and adaptive binarization. The second part improves KALMAN filter with surf points scale information to predict target position and search area adaptively. Lastly, the local Surf points of target template are matched in this search region to realize target tracking. The long-term tracking is updated following target scaling, occlusion and large deformation. Experimental results show that the algorithm can correctly detect small moving target in dynamic scenes with complex motions. It is robust to vehicle dithering and target scale changing, rotation, especially partial occlusion or temporal complete occlusion. Comparing with traditional algorithms, our method enables real time operation, processing $520{\times}390$ frames at around 15fps.