• 제목/요약/키워드: Local Search Algorithm

검색결과 447건 처리시간 0.023초

공간 상관성을 이용한 적응적 움직임 추정 알고리즘 (An Adaptive Motion Estimation Algorithm Using Spatial Correlation)

  • 박상곤;정동석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

탐색 범위를 적용한 비교 루틴 고속 블록 움직임 추정방법 알고리듬 (Comparison Fast-Block Matching Motion Estimation Algorithm for Adaptive Search Range)

  • 임유찬;밍경육;정정화
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.295-298
    • /
    • 2002
  • This paper presents a fast block-matching algorithm to improve the conventional Three-Step Search (TSS) based method. The proposed Comparison Fast Block Matching Algorithm (CFBMA) begins with DAB for adaptive search range to choose searching method, and searches a part of search window that has high possibility of motion vector like other partial search algorithms. The CFBMA also considers the opposite direction to reduce local minimum, which is ignored in almost conventional based partial search algorithms. CFBMA uses the summation half-stop technique to reduce the computational load. Experimental results show that the proposed algorithm achieves the high computational complexity compression effect and very close or better image quality compared with TSS, SES, NTSS based partial search algorithms.

  • PDF

진화연산과 신경망이론을 이용한 전력계통의 최적환경 및 경제운용 (Optimal Environmental and Economic Operation using Evolutionary Computation and Neural Networks)

  • 이상봉;김규호;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1498-1506
    • /
    • 1999
  • In this paper, a hybridization of Evolutionary Strategy (ES) and a Two-Phase Neural Network(TPNN) is applied to the optimal environmental and economic operation. As the evolutionary computation, ES is to search for the global optimum based on natural selection and genetics but it shows a defect of reducing the convergence rate in the latter part of search, and often does not search the exact solution. Also, neural network theory as a local search technique can be used to search a more exact solution. But it also has the defect that a solution frequently sticks to the local region. So, new algorithm is presented as hybrid methods by combining merits of two methods. The hybrid algorithm has been tested on Emission Constrained Economic Dispatch (ECED) problem and Weighted Emission Economic Dispatch (WEED) problem for optimal environmental and economic operation. The result indicated that the hybrid approach can outperform the other computational efficiency and accuracy.

  • PDF

적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정 (Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm)

  • 정희명;이화석;박준호
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

유전자알고리즘 및 경험법칙을 이용한 1차원 부재의 최적 절단계획 (Optimal Cutting Plan for 1D Parts Using Genetic Algorithm and Heuristics)

  • 조경호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.554-558
    • /
    • 2001
  • In this study, a hybrid method is used to search the pseudo-optimal solution for the I-dimentional nesting problem. This method is composed of the genetic algorithm for the global search and a simple heuristic one for the local search near the pseudo optimal solution. Several simulation results show that the hybrid method gives very satisfactory results.

  • PDF

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

다중 지역 정렬 알고리즘 구현 및 응용 (Implementation and Application of Multiple Local Alignment)

  • 이계성
    • 문화기술의 융합
    • /
    • 제5권3호
    • /
    • pp.339-344
    • /
    • 2019
  • 서열 정렬에 있어서 전체를 비교하여 두 서열 사이의 최대의 유사성 또는 상동성을 찾는 전역 정렬은 넓은 범위를 선호하게 되는 편향성을 갖게 된다. 비일치 부분을 과감히 제거하고 높은 일치도를 갖는 부분 영역을 정렬하게 되면 정렬점수를 높이는 효과를 갖게 된다. 여러 개의 부분 지역 정렬을 탐색하게 하는 다중 지역정렬 방법을 적용하여 다수의 지역정렬을 수행하는 알고리즘을 구현하고 결과를 분석해 본다. 지역 정렬에 일반적으로 사용되는 Smith-Waterman 알고리즘의 제한점 중 하나인 서열이 길어지는 것을 방지하고, sub-optimal sequence를 찾기 위한 방법을 응용하여 다중지역 정렬을 수행한다.

컴포넌트 서비스 기반의 휴리스틱 탐색 계획기 (A Heuristic Search Planner Based on Component Services)

  • 김인철;신행철
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.159-170
    • /
    • 2008
  • 최근 들어 로봇 작업 계획기에 요구되는 중요한 기능 중의 하나가 이미 존재하는 컴포넌트 서비스들을 결합하여 새로운 서비스로 조합해낼 수 있는 계획 기능이다. 본 논문에서는 이러한 컴포넌트 서비스 조합을 위한 커널모듈로 개발된 휴리스틱 탐색 계획기인 JPLAN의 설계와 구현에 대해 설명한다. JPLAN은 효율적인 상태 공간 탐색을 위해 지역 탐색 알고리즘과 계획 그래프 휴리스틱을 이용한다. 본 논문에서 제안하는 지역 탐색 알고리즘인 EHC+는 FF 등의 상태 공간 계획기에 적용되어 높은 효율성을 보인 Enforced Hill-Climbing (EHC)을 확장한 것이다. EHC+는 EHC에 비해 소량의 추가적인 지역 탐색을 필요로 하지만 목표 상태까지 전체 탐색 양을 줄일 수 있고 더 짧은 계획을 얻을 수있다. 또한 본 본문에서는 대규모 상태 공간 탐색에 필수적인 효과적인 휴리스틱 추출 방법을 제안한다. 본 논문에서 제안하는 휴리스틱 추출방법은 Graphplan에서 계획 생성을 위해 처음 제안된 계획 그래프를 이용한다. 본 논문에서는 이러한 계획 그래프 기반의 다양한 휴리스틱들을 소개하고, 이들이 계획 생성에 미치는 효과를 실험을 통해 분석해본다.

PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구 (PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems)

  • 문경준;이화석;박준호;김형수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권8호
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.

배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현 (Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems)

  • 문경준;송명기;김형수;김철홍;박준호;이화석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.