Fireworks Algorithm (FWA) is a relatively novel swarm-based metaheuristic algorithm for global optimization. To solve the low-efficient local searching problem and convergence of the FWA, this paper presents a Variable Amplitude Coefficient Fireworks Algorithm with Uniform Local Search Operator (namely VACUFWA). Firstly, the explosive amplitude is used to adjust improving the convergence speed dynamically. Secondly, Uniform Local Search (ULS) enhances exploitation capability of the FWA. Finally, the ULS and Variable Amplitude Coefficient operator are used in the VACUFWA. The comprehensive experiment carried out on 13 benchmark functions. Its results indicate that the performance of VACUFWA is significantly improved compared with the FWA, Differential Evolution, and Particle Swarm Optimization.
본 논문에서는 Rural Postman Problem(RPP) 해법을 위한 Iterative Local Search(ILS) 알고리즘을 제안한다. ILS 알고리즘은 초기해를 여러 번 생성하여 탐색 시작점을 달리하는 방법으로, 초기해의 설정 방법에 따라 알고리즘의 성능이 크게 좌우되는 Local Search(LS) 알고리즘의 단점을 보완할 수 있다. 본 논문에서는 LS 알고리즘과 ILS 알고리즘을 18개의 RPP 문제에 적용하고 그 성능을 분석한다. 실험 결과에서는 ILS 알고리즘이 각각 다른 탐색 시작점에서 해 공간을 탐색함으로서 LS에 비해 좋은 해를 찾을 수 있음을 알 수 있었다.
본 논문은 유전알고리즘과 random tabu 탐색법을 조합한 새로운 최적화 알고리즘을 제안한다. 유전알고리즘과 전역적인 최적해에 대한 탐색능력이 우수하고, random tabu 탐색법은 최적해에의 수렴속도가 매우 빠른 알고리즘이다. 본 논문에서는 이 두 알고리즘의 장점을 이용해서 수렴정도와 수렴속도가 더욱 향상된 최적알고리즘을 제안하여 알고리즘의 수렴성능을 조사하고, 실제 최적화문제로서 지진응답을 최소로 하기위한 배관지지대의 최적배치문제에 적용하여 기존의 방법과 비교를 통하여 유용성을 검토하였다.
The NP-hard channel assignment problem becomes more and more important to use channels as efficiently as possible because there is a rapidly growing demand and the number of usable channel is very limited. The hybrid genetic and local search (HGLS) method in this paper is a hybrid method of genetic algorithm with no interference channel assignment (NICA) in clustering stage for diversified search and local search in tuning stage when the step of search is near convergence for minimizing blocking calls. The new representation of solution is also proposed for effective search and computation for channel assignment.
In this paper, we first construct a mathematical model for tagSNP selection based on LD measure $r^2$, then aiming at this kind of model, we develop an efficient algorithm, which is called approximate greedy algorithm. This algorithm is able to make up the disadvantage of the greedy algorithm for tagSNP selection. The key improvement of our approximate algorithm over greedy algorithm lies in that it adds local replacement(or local search) into the greedy search, tagSNP is replaced with the other SNP having greater similarity degree with it, and the local replacement is performed several times for a tagSNP so that it can improve the tagSNP set of the local precinct, thereby improve tagSNP set of whole precinct. The computational results prove that our approximate greedy algorithm can always find more efficient solutions than greedy algorithm, and improve the tagSNP set of whole precinct indeed.
다층 신경망의 학습에 있어서 역전파 알고리즘은 시스템이 지역적 최소치에 빠질수 있고,탐색공간의 피라미터들에 의해 신경망 시스템의 성능이 크게 좌우된다는 단점이 있다.이러한 단점을 보완하기 의해 유전자 알고리즘이 신경망의 학습에 도입도었다.그러나 유전자 알고리즘에는 역전파 알고리즘과 같은 미세 조정되는 지역적 탐색(fine-tuned local search) 을 위한 메카니즘이 존재하지 않으므로 시스템이 전역적 최적해로 수렴하는데 많은 시간을 필요로 한다는 단점이 있다. 따라서 본 논문에서는 역전파 알고리즘의 기울기 강하 기법(gradient descent method)을 교배나 돌연변이와 같은 유전 연산자로 둠으로써 유전자 알고리즘에 지역적 미세 조정(local fine-tuning)을 위한 메카니즘을 제공해주는 새로운 형태의 GA-BP 방법을 제안한다.제안된 방법의 유용성을 보이기 위해 3-패러티 비트(3-parity bit) 문제에 실험하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3041-3063
/
2018
Community search aims at finding a meaningful community that contains the query node and also maximizes (minimizes) a goodness metric. This problem has recently drawn intense research interest. However, most metric-based algorithms tend to include irrelevant subgraphs in the identified community. Apart from the user-defined metric algorithm, how can we search the natural community that the query node belongs to? In this paper, we propose a novel community search algorithm based on the concept of the k-hop and local distance dynamics model, which can naturally capture a community that contains the query node. The basic idea is to envision the nodes that k-hop away from the query node as an adaptive local dynamical system, where each node only interacts with its local topological structure. Relying on a proposed local distance dynamics model, the distances among nodes change over time, where the nodes sharing the same community with the query node tend to gradually move together, while other nodes stay far away from each other. Such interplay eventually leads to a steady distribution of distances, and a meaningful community is naturally found. Extensive experiments show that our community search algorithm has good performance relative to several state-of-the-art algorithms.
In this paper, a procedure using a genetic algorithm (GA) and a heuristic local search (HLS) is proposed for solving facility rearrangement problem (FRP). FRP is a decision problem for stopping/running of facilities and integration of stopped facilities to running facilities to maximize the production capacity of running facilities under the cost constraint. FRP is formulated as an integer programming model for maximizing the total production capacity under the constraint of the total facility operating cost. In the cases of 90 percent of cost constraint and more than 20 facilities, the previous solving method was not effective. To find effective alternatives, this solving procedure using a GA and a HLS is developed. Stopping/running of facilities are searched by GA. The shifting the production operation of stopped facilities into running facilities is searched by HLS, and this local search is executed for one individual in this GA procedure. The effectiveness of the proposed procedure using a GA and HLS is demonstrated by numerical experiment.
This paper presents a new algorithm that includes a mechanism to avoid local solutions in a motion vector detection method that uses the steepest descent method. Two different implementations of the algorithm are demonstrated using two major search methods for tree structures, depth first search and breadth first search. Furthermore, it is shown that by avoiding local solutions, both of these implementations are able to obtain smaller prediction errors compared to conventional motion vector detection methods using the steepest descent method, and are able to perform motion vector detection within an arbitrary upper limit on the number of computations. The effects that differences in the search order have on the effectiveness of avoiding local solutions are also presented.
Static repositioning is a well-known and commonly used strategy to maximize customer satisfaction in public bike-sharing systems. Repositioning is performed by trucks at night when no customers are in the system. In models that represent the static repositioning problem, the decision variables are truck routes and the number of bikes to pick up and deliver at each rental station. To simplify the problem, the decision on the number of bikes to pick up and deliver is implicitly included in the truck routes. Two relocation-based local search algorithms (1-relocate and 2-relocate) with the best-accept strategy are incorporated into a variable neighborhood search (VNS) to obtain high-quality solutions for the problem. The performances of the VNS algorithm with the effect of local search algorithms and shaking strength are evaluated with data on Tashu public bike-sharing system operating in Daejeon, Korea. Experiments show that VNS based on the sequential execution of two local search algorithms generates good, reliable solutions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.