• Title/Summary/Keyword: Local Path

Search Result 611, Processing Time 0.03 seconds

The Real-time Path Planning Using Artificial Potential Field and Simulated Annealing for Mobile Robot (Artificial Potential Field 와 Simulated Annealing을 이용한 이동로봇의 실시간 경로계획)

  • 전재현;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.256-256
    • /
    • 2000
  • In this parer, we present a real-time path planning algorithm which is integrated the artificial potential field(APF) and simulated annealing(SA) methods for mobile robot. The APF method in path planning has gained popularity since 1990's. It doesn't need the modeling of the complex configuration space of robot, and is easy to apply the path planning with simple computation. However, there is a major problem with APF method. It is the formation of local minima that can trap the robot before reaching its goal. So, to provide local minima recovery, we apply the SA method. The effectiveness of the proposed algorithm is verified through simulation.

  • PDF

Local Path Generation Method for Unmanned Autonomous Vehicles Using Reinforcement Learning (강화학습을 이용한 무인 자율주행 차량의 지역경로 생성 기법)

  • Kim, Moon Jong;Choi, Ki Chang;Oh, Byong Hwa;Yang, Ji Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.369-374
    • /
    • 2014
  • Path generation methods are required for safe and efficient driving in unmanned autonomous vehicles. There are two kinds of paths: global and local. A global path consists of all the way points including the source and the destination. A local path is the trajectory that a vehicle needs to follow from a way point to the next in the global path. In this paper, we propose a novel method for local path generation through machine learning, with an effective curve function used for initializing the trajectory. First, reinforcement learning is applied to a set of candidate paths to produce the best trajectory with maximal reward. Then the optimal steering angle with respect to the trajectory is determined by training an artificial neural network. Our method outperformed existing approaches and successfully found quality paths in various experimental settings, including the cases with obstacles.

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method (Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘)

  • Lim, Yun-Won;Jeong, Jin-Su;An, Jin-Ung;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

Practical Path-planning Framework Considering Waypoint Visibility for Indoor Autonomous Navigation using Two-dimensional LiDAR Sensors (경유지의 가시성을 고려한 2차원 라이다 센서 기반의 실용적인 경로 계획 프레임워크)

  • Hyejeong Ryu
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.196-202
    • /
    • 2024
  • Path-planning, a critical component of mobile robot navigation, comprises both local and global planning. Previous studies primarily focused on enhancing the individual performance of these planners, avoiding obstacles, and computing an optimal global path from a starting position to a target position. In this study, we introduce a practical path-planning framework that employs a target planner to bridge the local and global planners; this enables mobile robots to navigate seamlessly and efficiently toward a global target position. The proposed target planner assesses the visibility of waypoints along the global path, and it selects a reachable navigation target, which can then be used to generate efficient control commands for the local planners. A visibility-based target planner can handle situations, wherein the current, target waypoint is occupied by unknown obstacles. Real-world experiments demonstrated that the proposed pathplanning framework with the visibility-based target planner allowed the robot to navigate to the final target position along a more efficient path than the framework without a target planner.

Implementation of local model for non-local impact ionization (Non-local impact ionization 현상해석을 위한 local model 개발)

  • 염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.385-388
    • /
    • 1999
  • A new local model for impact ionization coefficients is proposed to account for a non-local effect. New model uses an effective electric field which comes from the path integral of a tangent electric field at an arbitrary point. The model consists of local variables, such as doping concentration, carrier concentration and gradient of the field, and can be easily applied to a conventional drift-diffusion device simulator. By comparing the results with Monte Carlo simulation, it is confirmed that new model explains the non-local effect fairly well.

  • PDF

Development of Potential Function Based Path Planning Algorithm for Mobile Robot

  • Lee, Sang-Il;Kim, Myun-Hee;Oh, Kwang-Seuk;Lee, Sang-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2325-2330
    • /
    • 2005
  • A potential field method for solving the problem of path planning based on global and local information for a mobile robot moving among a set of stationary obstacles is described. The concept of various method used path planning is used design a planning strategy. A real human living area is constructed by many moving and imminence obstacles. Home service mobile robot must avoid many obstacles instantly. A path that safe and attraction towards the goal is chosen. The potential function depends on distance from the goal and heuristic function relies on surrounding environments. Three additional combined methods are proposed to apply to human living area, calibration robots position by measured surrounding environment and adapted home service robots. In this work, we proposed the application of various path planning theory to real area, human living. First, we consider potential field method. Potential field method is attractive method, but that method has great problem called local minimum. So we proposed intermediate point in real area. Intermediate point was set in doorframe and between walls there is connect other room or other area. Intermediate point is very efficiency in computing path. That point is able to smaller area, area divided by intermediate point line. The important idea is intermediate point is permanent point until destruction house or apartment house. Second step is move robot with sensing on front of mobile robot. With sensing, mobile robot recognize obstacle and judge moving obstacle. If mobile robot is reach the intermediate point, robot sensing the surround of point. Mobile robot has data about intermediate point, so mobile robot is able to calibration robots position and direction. Third, we gave uncertainty to robot and obstacles. Because, mobile robot was motion and sensing ability is not enough to control. Robot and obstacle have uncertainty. So, mobile robot planed safe path planning to collision free. Finally, escape local minimum, that has possibility occur robot do not work. Local minimum problem solved by virtual obstacle method. Next is some supposition in real living area.

  • PDF

Autonomous Flight System of UAV through Global and Local Path Generation (전역 및 지역 경로 생성을 통한 무인항공기 자율비행 시스템 연구)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, a global and local flight path system for autonomous flight of the UAV is proposed. The overall system is based on the ROS robot operating system. The UAV in-built computer detects obstacles through 2-D Lidar and generates real-time local path and global path based on VFH and Modified $RRT^*$-Smart, respectively. Additionally, a movement command is issued based on the generated path on the UAV flight controller. The ground station computer receives the obstacle information and generates a 2-D SLAM map, transmits the destination point to the embedded computer, and manages the state of the UAV. The autonomous UAV flight system of the is verified through a simulator and actual flight.

A Study of On­-demand Routing with using Dual-­Path and Local­-Repair in Ad­-hoc Networks (Ad­-hoc Network에서 Dual-­Path와 Local­-Repair를 이용한 On-­demand Routing에 관한 연구)

  • 고관옥;송주석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.400-402
    • /
    • 2003
  • Ad­hoc Network는 Mobile Node들 간에 Multi­hop 무선 링크로 구성되는 Network을 일컫는 말이며, 동시에 Network를 통제하는 Infrastructure없이 Node들 간의 상호 통신에 의해서 Network이 구성되기도 하고, Node들이 이동하거나 환경적인 장애에 의해서 일시적으로 Network이 구성되지 않기도 한다. 이 논문에서는 대표적인 On­demand Routing Algorithm인 DSR를 이용하여, 두 개의 경로를 유지하여 Primary Path에 문제가 발생하는 경우, Secondary Path가 Primary Path로 전환되어 Data를 전송하고, 이 전 Primary Path에 대하여 지역적으로 복구(Repair)를 수행하고, 설정된 Secondary Path에 대해서도 특정한 조건에서 복구작업을 수행함으로써 Ad­hoc Network에서 경로를 찾고 설정하는데 필요한 Routing Overhead를 줄이고 Ad­hoc Network의 특성상 반드시 보완하여야 하는 전송 Route에 대한 Robustness를 강화하는 방법이다.

  • PDF

Local path-planning of a 8-dof redundant robot for the nozzle dam installation/detachment of the nuclear power plants

  • Park, Ki C.;Chang, Pyung H.;Kim, Seung H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.133-136
    • /
    • 1996
  • The nozzle dam task is essentially needed to maintain and repair nuclear power plants. For this task, an 8-dof redundant robot is studied with a local path-planning method[l] which is effective to find the optimal joint path in the constrained environment. In this paper, the method[l] is improved practically with the weight matrix and efficient algorithm to find working set. The effectiveness of the proposed method is demonstrated by simulation and animation.

  • PDF