• Title/Summary/Keyword: Local Buckling Stress

Search Result 140, Processing Time 0.02 seconds

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

Bifurcation Criterion in Eccentrically Compressed Rectangular Tubes (편심압축하중을 받는 사각튜브의 분기세장비)

  • 김천욱;한병기;정창현;김치균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.270-278
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Overall buckling stress and bifurcation criterion (slenderness ration)are investigated. modified secant formula(MSF) is proposed to decide overall buckling stress. The bifurcation criterion which can distinguish between the local and overall buckling mode shapes is suggest by equating the local and overall buckling stresses. Additionally the effect of initial imperfection on bifurcation criterion is investigated.

  • PDF

Effect of varying the size of flatbar stiffeners on the buckling behaviour of thin cylinders on local supports

  • Vanlaere, Wesley;Impe, Rudy Van;Lagae, Guy;Maes, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.217-230
    • /
    • 2005
  • A steel silo traditionally consists of a cylindrical and a conical shell. In order to facilitate emptying operations, the cylinder is placed on local supports. This may lead to dangerous stress concentrations and eventually to local instability of the cylindrical wall. In this contribution, the locally supported cylinder is strengthened by means of ring stiffeners and longitudinal stiffeners and the effect of their dimensions on the buckling stress is investigated. This study leads to a number of diagrams, each of them representing the effect of one of the dimensions on the buckling stress. In each diagram, the failure pattern corresponding to the buckling stress is indicated.

Local Buckling and Optimum Width-Thickness Ratios of I-Beams in Fire (화재시 I-형강 보의 국부좌굴과 최적 폭-두께비)

  • Kang, Moon Myung;Yun, Young Mook;Kang, Sung Duk;Plank, R.J.
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.491-498
    • /
    • 2005
  • This study involves the development of a computer program to analyze the local buckling stresses for the flange and the web of I-beams under compression at elevated temperatures, and the optimization algorithm to analyze the optimum width-thickness ratios which does not occur their local buckling prior to yield failure. The high-temperature stress-strain relationships of steel used in this study were based on EC3 (Eurocode3) Part1.2 (2000b). In this study, the local buckling stresses and the optimum width-thichness ratios were analyzed considering the influences of the yield stress, local buckling coefficients and width-thickness ratios of the flange and the web. Design examples show the applicability of the computer program developed in this study.

Local buckling behaviour of steel plate elements supported by a plastic foam material

  • Mahendran, M.;Jeevaharan, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.433-445
    • /
    • 1999
  • Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

Buckling analysis of elastically-restrained steel plates under eccentric compression

  • Qin, Ying;Shu, Gan-Ping;Du, Er-Feng;Lu, Rui-Hua
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.379-389
    • /
    • 2018
  • In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018).

Maximum Crippling Load in Eccentrically Compressed rectangular Tubes (편심압축하중을 받는 사각튜브의 최대압괴하중)

  • 김천욱;한병기;정창현;김지홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

Analytical study of buckling profile web stability

  • Taleb, Chems eddine;Ammari, Fatiha;Adman, Redouane
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.147-158
    • /
    • 2015
  • Elements used in steel structures may be considered as an assembly of number of thin flat walls. Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently rigid to constitute fixed supports to it. In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The objective is to determine, for a given web, flanges dimensions from which the latter can be considered as simple support for this web.

A Study on the Local Buckling of H-Beams at Elevated Temperatures (온도상승(溫度上昇)에 따른 H-형강(形鋼)보의 국부좌굴(局部挫屈)에 관(關)한 연구(硏究))

  • Koo, Bon Youl;Kang, Moon Myung;Kang, Sung-Duk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.103-111
    • /
    • 2004
  • This paper dealt with the local buckling of H-beams investigated mainly using the parameters of load ratios. load conditions, and support boundary condition considering predicted uniformly elevated temperatures. The physical properties of the material at elevated temperatures followed EC3 Park 1.2. The local buckling of the plates in steel beams show that they are governed by the yield stress or the critical stress of the steel plates according to the ratios of b/tf, d/tw. The evaluation of uniformly heated steel beams on the local buckling considered the stress and moment ratios to the LRFD.