• Title/Summary/Keyword: Local Bubble

Search Result 63, Processing Time 0.029 seconds

DOUBLE STARS AS TRACERS OF TINY STRUCTURES IN THE INTERSTELLAR MEDIUM

  • MORABBI, SOMAYEH;MIRTORABI, MOHAMMAD TAGHI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.89-91
    • /
    • 2015
  • Observed spectra of stars around the Sun have indicated that the Sun is located in a gas cavity, extending to 100pc. This gas cavity is called the "Local Bubble". The density of the interstellar medium (ISM) in the local bubble is about one tenth that of the average for the ISM in the Milky Way. Furthermore, some structures such as gas planes and strings in the local bubble are probably the result of supernovae. These, due to their low temperatures, can not be observed in the visible and infrared. The only way to do so is to measure the spectra of nearby stars so that the light of stars passing through the local bubble is absorbed by existing gas and the resulting spectral lines from absorption can be measured. In this study, we use binary stars to trace the local bubble structures through lines such as the Na I Doublet. First, we determined the observed spectral lines of stars by HARPS and FEROS echelle spectrographs. Then, we made synthetic spectra with the ATLAS9 code. Finally, the difference between the observational and synthetic spectra confirms the existence of the Na I Doublet in the local ISM.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles (기포운동에 따른 2상유동 특성에 관한 연구)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.268-273
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas is concentrated at the near nozzle, the flow parameters are high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (P.I..V) and a thermo-vision camera were used in the present study. The experimental results show that heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

Experimental study of bubble flow behavior during flow instability under uniform and non-uniform transverse heat distribution

  • Al-Yahia, Omar S.;Yoon, Ho Joon;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2771-2788
    • /
    • 2020
  • Experiments are conducted to study bubble flow behavior during the instability of subcooled boiling under uniform and non-uniform transverse heating. The non-uniform heat distribution introduces nonuniform bubble generation and condensation rates on the heated surface, which is different from the uniform heating. These bubble generation and condensation characteristics introduce a non-uniform local pressure distribution in the transverse direction, which creates an extra non-uniform pressure on the flowing bubbles. Therefore, different bubble flow behavior can be observed between uniform and non-uniform heating conditions. In the uniform heating, bubble velocity fluctuations are low, and the bubbles travel straight along the axial direction. In the non-uniform heating, more fluctuation in the bubble velocity occurs at low mass flow rate and high subcooled inlet temperatures, and reverse flow is observed. Additionally, the bubbles show a zigzag trajectory when they pass through the channel, which indicates the existence of cross flow in the transverse direction.

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

On the Variation of Resistance Components due to Air Bubble Blowing on Bulb Surface of a Ship (구상 선수 주위의 유동과 기포 공급 효과에 관한 실험적 연구)

  • Geun-Tae Yim;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.54-64
    • /
    • 1996
  • It seems that blowing air bubble out of the bulb surface of a ship of flat bottom will reduce the frictional resistance, since wetted area of the hull surface is reduced owing to air bubble staying close to the surface. To as certain this concept, at first, the limiting streamlines around the bow was observed, and local distribution of pressure and shear stress, due to the change of air-blowing position, air supply pressure, and the model speed, was investigated. It was found that the local friction was reduced near the bulb and air-bubble formations also play an important role as a drag component. This paper can be considered as a preliminary study on the drag reduction of conventional ships by the micro-bubble injection.

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

Comparative Study of Mass Transfer and Bubble Hydrodynamic Parameters in Bubble Column Reactor: Physical Configurations and Operating Conditions

  • Sastaravet, Prajak;Chuenchaem, Chomthisa;Thaphet, Nawaporn;Chawaloesphonsiya, Nattawin;Painmanakul, Pisut
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, effects of physical configurations and operating conditions on bubble column performance were analyzed in terms of bubble hydrodynamic and mass transfer parameters. Bubble column with 3 different dimensions and 7 gas diffusers (single / multiple orifice and rigid / flexible orifice) were applied. High speed camera and image analysis program were used for analyzing the bubble hydrodynamic parameters. The local liquid-side mass transfer coefficient ($k_L$) was estimated from the volumetric mass transfer coefficient ($k_La$) and the interfacial area (a), which was deduced from the bubble diameter ($D_B$) and the terminal bubble rising velocity ($U_B$). The result showed that the values of kLa and a increased with the superficial gas velocity (Vg) and the size of bubble column. Influences of gas diffuser physical property (orifice size, thickness and orifice number) can be proven on the generated bubble size and the mass transfer performance in bubble column. Concerning the variation of $k_L$ coefficients with bubble size, 3 zones (Zone A, B and C) can be observed. For Zone A and Zone C, a good agreement between the experimental and the predicted $K_L$ coefficients was obtained (average difference of ${\pm}15%$), whereas the inaccuracy result (of ${\pm}40%$) was found in Zone B. To enhance the high $k_La$ coefficient and absorption efficiency in bubble column, it was unnecessary to generate numerous fine bubbles at high superficial gas velocity since it causes high power consumption with the great decrease of $k_L$ coefficients.

Study of the RBTRAN Code for Upper Plenum Analysis in Very Small LOCA (매우 작은 규모의 LOCA에 있어서 Upper Plenum분석을 위한 RETRAN코드의 연구)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.125-130
    • /
    • 1984
  • In the application of the RETRAN code to the analysis of very small LOCA one of main concerns is placed on use of the bubble rise model in the upper plenum, because the bubble rise model nay cause a numerical divergence problem and coefficients used to describe it are based on experimental results of large LOCA. In order to solve this problem, a method, which enables us to predict the mixture level in the upper plenum without use of the bubble rise model, was proposed. For this method the local void distribution in the core and upper plenum was derived by using a simplified slip model. It was shown that results predicted from the derived equation are in excellent agreement with experimental data. Additionally it was found that local void in the upper plenum has a uniform distribution unlike a linear distribution in large LOCA. Communication between the upper plenum and upper head was investigated. By introducing the concept of Taylor instability, it was proved that counter-current Hon between them is possible.

  • PDF