• Title/Summary/Keyword: Local Base

Search Result 823, Processing Time 0.032 seconds

Optimal Base Position and Joint Configuration of a Wheeled Manipulator

  • Kim, Sung-Bok;Kim, Hyoung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.834-839
    • /
    • 2004
  • In this paper, we investigate the optimal base position and joint configuration of a planar wheeled mobile manipulator in terms of manipulability measure. Taking into account the level of coordination between a manipulator and a platform, both local and global optimization problems are considered. First, based on the kinematic models of a mobile manipulator, the manipulability measures are expressed along with the analysis of the configurational dependency. Second, the geometric symmetry of a mobile manipulator in view of manipulability measure is analyzed, and for some base positions, the best and worst joint configurations are determined, Third, with reverence to the maximum, minimum, and average manipulability measures, the optimal base positions are determined, and the percent improvements due to the base relocation are discussed considering the relative scales among the platform size, the wheel radius, and the link length.

  • PDF

ZBB: Zero-Base Budgeting (영점기준 예산제도)

  • 하재진;이진주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.2
    • /
    • pp.47-74
    • /
    • 1978
  • This paper reviews the zero-base budgeting whose concept was developed in the late 1960's, and applied to the actual budgeting situations in the early 1970's. Since then, it has been expanded to become one of major tools in corporate planning and control system. The primary purpose of this review is to clarify the followings: 1) concept of zero-base budgeting and its history, 2) relationships among zero-base budgeting, planning and program evaluation, 3) comparison of zero-base budgeting with other budgeting techniques, and 4) implementation procedure. Some discussions are also provided with respect to the practical implications of zero-base budgeting, its advantages and disadvantages, and others. Finally, the possibility of actual application in a local setting is investigated.

  • PDF

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Anterior Cranial Base Reconstruction in Complex Craniomaxillofacial Trauma: An Algorithmic Approach and Single-Surgeon's Experience

  • Shakir, Sameer;Card, Elizabeth B.;Kimia, Rotem;Greives, Matthew R.;Nguyen, Phuong D.
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Management of traumatic skull base fractures and associated complications pose a unique reconstructive challenge. The goals of skull base reconstruction include structural support for the brain and orbit, separation of the central nervous system from the aerodigestive tract, volume to decrease dead space, and restoration of the three-dimensional appearance of the face and cranium with bone and soft tissues. An open bicoronal approach is the most commonly used technique for craniofacial disassembly of the bifrontal region, with evacuation of intracranial hemorrhage and dural repair performed prior to reconstruction. Depending on the defect size and underlying patient and operative factors, reconstruction may involve bony reconstruction using autografts, allografts, or prosthetics in addition to soft tissue reconstruction using vascularized local or distant tissues. The vast majority of traumatic anterior cranial fossa (ACF) injuries resulting in smaller defects of the cranial base itself can be successfully reconstructed using local pedicled pericranial or galeal flaps. Compared with historical nonvascularized ACF reconstructive options, vascularized reconstruction using pericranial and/or galeal flaps has decreased the rate of cerebrospinal fluid (CSF) leak from 25 to 6.5%. We review the existing literature on this uncommon entity and present our case series of n = 6 patients undergoing traumatic reconstruction of the ACF at an urban Level 1 trauma center from 2016 to 2018. There were no postoperative CSF leaks, mucoceles, episodes of meningitis, or deaths during the study follow-up period. In conclusion, use of pericranial, galeal, and free flaps, as indicated, can provide reliable and durable reconstruction of a wide variety of injuries.

A study on the Accuracy Analysis of the World Geodetic System Transformation for GIS Base Map and Database (GIS 기본도 및 DB의 세계측지계 좌표변환 정확도 분석에 관한 연구)

  • Cho, Jae-Kwan;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Bo-Mi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.79-85
    • /
    • 2008
  • This study aims to derive a practical coordinate transformation method for the existing geographic information database. After analyzing the status and problems of existing 1/1,000 digital base map and GIS application database, the transformation parameters are estimated and the accuracy of the transformation is determined based on the transformed coordinates. We analyzed the accuracy of a transformation using the published national transformation coefficients as well as the estimated local transformation coefficients using national and urban control points in a study area. In addition, the 1/1,000 digital base map from aerial triangulation is compared with respect to the coordinates of urban control points. Based on the comparison, the biases on the national control points which were used at the time of digital map generation was analyzed. Then, the accuracy of transformed coordinates based on the world geodetic system using local transformation coefficients estimated from urban control points are determined. We also analyzed the transformation accuracy of underground infrastructure database using the same transformation method as the case of 1/1,000 digital base map. Through this study, it was found that the estimation of transformation coefficients by Molodensky-Badekas using urban control points was suitable for a local government. Furthermore, it was obvious that the accuracy of a 2-dimensional affine transformation was comparable to that of 7 parameter transformation for a local area. Applying the coordinate transformation and bias correction, we could transform GIS application database which was built by an offset surveying based on digital base map within the transformation accuracy of 10 cm. Therefore, it was judged that there will not be a big problem on the transformation of the GIS DB to the world geodetic system.

  • PDF

A Simulation of Vehicle Parking Distribution System for Local Cultural Festival with Queuing Theory and Q-Learning Algorithm (대기행렬이론과 Q-러닝 알고리즘을 적용한 지역문화축제 진입차량 주차분산 시뮬레이션 시스템)

  • Cho, Youngho;Seo, Yeong Geon;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2020
  • Purpose The purpose of this study is to develop intelligent vehicle parking distribution system based on LoRa network at the circumstance of traffic congestion during cultural festival in a local city. This paper proposes a parking dispatch and distribution system using a Q-learning algorithm to rapidly disperse traffics that increases suddenly because of in-bound traffics from the outside of a city in the real-time base as well as to increase parking probability in a parking lot which is widely located in a city. Design/methodology/approach The system get information on realtime-base from the sensor network of IoT (LoRa network). It will contribute to solve the sudden increase in traffic and parking bottlenecks during local cultural festival. We applied the simulation system with Queuing model to the Yudeung Festival in Jinju, Korea. We proposed a Q-learning algorithm that could change the learning policy by setting the acceptability value of each parking lot as a threshold from the Jinju highway IC (Interchange) to the 7 parking lots. LoRa Network platform supports to browse parking resource information to each vehicle in realtime. The system updates Q-table periodically using Q-learning algorithm as soon as get information from parking lots. The Queuing Theory with Poisson arrival distribution is used to get probability distribution function. The Dijkstra algorithm is used to find the shortest distance. Findings This paper suggest a simulation test to verify the efficiency of Q-learning algorithm at the circumstance of high traffic jam in a city during local festival. As a result of the simulation, the proposed algorithm performed well even when each parking lot was somewhat saturated. When an intelligent learning system such as an O-learning algorithm is applied, it is possible to more effectively distribute the vehicle to a lot with a high parking probability when the vehicle inflow from the outside rapidly increases at a specific time, such as a local city cultural festival.

Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant (원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향)

  • Shin, Mincheol;Kim, Young Sik;Kim, Kyungsu;Chang, Hyunyoung;Park, Heungbae;Sung, Giho
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

Amber Information Design to Keep Safety-Driving Under Road Structure at Local-Scale Geographic (국지지역 도로 기반 시설에서 안전운전을 위한 경보 정보 설계)

  • Park, Jung-Chan;Hong, Gyu- Jang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In order to keep safe driving conditions under road networks, there are several formations such as road structure, road surface condition, traffic occupancy and supplement of an accurate information of traffic status ahead To support safe-driving on each road formation, each formation is supplied with various information to help the driver. However, in some cases like rapid status change at local-scale geography, traffic information systems often displays insufficient information because of the lack of information correlation. In order to accurately aware the driver, all road formation must be in sync. It is important to supply accurate information to the driver because this information directly impacts the drivers on the road. This paper discusses the amber information to keep the least safety driving over road formations including tunnels and bridges. This paper also will propose the informations for safe-driving conditions, information linkage on the road and rule-base safety information, as ITS technology, being displayed for all drivers under the worst weather conditions.

On Solving the Tree-Topology Design Problem for Wireless Cellular Networks

  • Pomerleau Yanick;Chamberland Steven;Pesant Gilles
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • In this paper, we study a wireless cellular network design problem. It consists of selecting the location of the base station controllers and mobile service switching centres, selecting their types, designing the network into a tree-topology, and selecting the link types, while considering the location and the demand of base transceiver stations. We propose a constraint programming model and develop a heuristic combining local search and constraint programming techniques to find very good solutions in a reasonable amount of time for this category of problem. Numerical results show that our approach, on average, improves the results from the literature.