• 제목/요약/키워드: Loading tests

검색결과 2,310건 처리시간 0.026초

Experimental investigation of the effects of pipe location on the bearing capacity

  • Bildik, Selcuk;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.221-235
    • /
    • 2015
  • A series of laboratory model tests were conducted to investigate the effects of buried pipes location on the bearing capacity of strip footing in cohesionless soil. The variables examined in the testing program include relative density of the sand, loading rate of tests, burial depths of pipe and horizontal distance of pipe to footing. The test results showed a significant increase in bearing capacities when embedment ratio of pipe and horizontal distance of pipe to footing were increased. Based on the test results, it can be concluded that the location of pipes and relative density of sand are main parameters that affect the bearing capacity of strip footing. However, loading rate has not considerable effect on bearing capacity.

열차모의하중에 대한 단섬유 보강토체의 침하특성 (Settlement Characteristics of Short-fiber Reinforced Soil under Simulated Railroad Loading)

  • 박영곤;김정기;김현기;황선근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.596-600
    • /
    • 2002
  • To analyze the settlement characteristics of short-fiber reinforced soil(SFRS), which will be used as a new backfill material of reinforced retaining wall, under simulated railroad loading, a series of tests with loading condition of 5 Hz frequency and 500,000 cycles were performed. The materials used for tests are soils with SM or ML type, and polypropylene short-fibers with mono-filament(PPM) or fibrillated type(PPF). From the tests, average plastic settlement is low at PPF38(0.3%)(abbreviation of PPF with 38mm length and mixing ratio 0.3%), PPF38(0.5%), PPM60(0.2%) for SFRS using SM soil and at PPF38(0.3%), PPF60(0.2%) for SFRS using ML soil. Elastic settlement is low at PPM60(0.2%) for SFRS using SM soil and at PPM60(0.5%) for SFRS using ML soil.

  • PDF

강우로 유실된 철도노반 긴급복구를 위한 지오백시스템 개발 기초연구 (A Basic Study on the Geobag System for Urgent Restoration of the Collapsed Roadbed)

  • 조삼덕;황선근;이대영;이광우
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.255-265
    • /
    • 2003
  • 본 연구에서는 해마다 여름철 호우기에 집중적으로 발생되는 철도노반 유실 현장의 신속한 복구를 위하여 사용되는 지오백의 공학적 특성을 평가하기 위해, 일련의 실내시험을 수행하였다. 먼저 본 복구시스템에 사용되는 지오백의 최적 크기는 일반적인 철도노반 유실 현장 상황을 고려하여 44cm$\times$66cm로 제안하였으며, 최적 채움도는 일련의 정적하중재하시험 결과 80%가 적합한 것으로 나타났다. 한편 본 연구에서는 일련의 축소모형실험을 통해 정적 및 동적 하중 재하시 지오백축조노반의 공학적 거동 특성 및 토압 분포특성을 평가하였다.

지오그리드로 보강한 고속철도 노반의 동적 거동 (The behavior of high-speed rail roadbed reinforced by geogrid under cyclic loading)

  • 신은철;김두환;김종인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.415-422
    • /
    • 1999
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

비행하중하에서 2124-T851 알루미늄합금의 피로균열진전 예측 (Prediction of Crack Growth in 2124-7851 Al-Alloy Under Flight-Simulation Loading)

  • 심동석;황돈영;김정규
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1487-1494
    • /
    • 2002
  • In this study, to propose the prediction method of the crack growth under flight-simulation loading, crack growth tests are conducted on 2124-7851 aluminum alloy specimens. The prediction of crack growth under flight-simulation loading is performed by the stochastic crack growth model which was developed in previous study. First of all, to reduce the complex load history into a number of constant amplitude events, rainflow counting is applied to the flight-simulation loading wave. The crack growth, then, is predicted by the stochastic crack growth model that can describe the load interaction effect as well as the variability in crack growth process. The material constants required in this model are obtained from crack growth tests under constant amplitude loading and single tensile overload. The curves predicted by the proposed model well describe the crack growth behavior under flight-simulation loading and agree with experimental data. In addition, this model well predicts the variability of fatigue lives.

변동하중하에서 고강도 알루미늄 합금의 피로수명 예측 (Fatigue Life Prediction for High Strength AI-alloy under Variable Amplitude Loading)

  • 심동석;김강범;김정규
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2074-2082
    • /
    • 2000
  • In this study, to investigate and to predict the crack growth behavior under variable amplitude loading, crack growth tests are conducted on 7075-T6 aluminum alloy. The loading wave forms are generated by normal random number generator. All wave forms have same average and RMS(root mean square) value, but different standard deviation, which is to vary the maximum load in each wave. The modified Forman's equation is used as crack growth equation. Using the retardation coefficient D defined in previous study, the load interaction effect is considered. The variability in crack growth process is described by the random variable Z which was obtained from crack growth tests under constant amplitude loading in previous work. From these, a statistical model is developed. The curves predicted by the proposed model well describe the crack growth behavior under variable amplitude loading and agree with experimental data. In addition, this model well predicts the variability in crack growth process under variable amplitude loading.

Damage and fatigue quantification of RC structures

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1021-1044
    • /
    • 2016
  • Different versions of a damage index (DI) along with a formulation to find the number of cycles at failure due to fatigue, applicable to reinforced concrete (RC) structures are presented. These are based on an energetic analysis method and applicable to both global and local levels. The required data can be found either from the numerical simulation of structures or from the experimental tests. A computer program has been developed to simulate numerically the nonlinear behavior of RC columns under cyclic loading. The proposed DI gives a regular distribution of structural damages up to failure and is validated by the results of the tests carried out on RC columns subjected to cyclic loading. In general, the local and global damage indices give approximately similar results, while each of them has its own advantages. The advantage of the implicit version of DI is that, it allows the comparison of the results with those of the monotonic loading case, while the explicit version makes it possible to estimate the number of loading cycles at failure due to fatigue, and the advantage of the simplified version is that; the monotonic loading data is not needed for the cyclic loading case.

원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가 (Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests)

  • 유민택;권선용
    • 한국지반공학회논문집
    • /
    • 제34권7호
    • /
    • pp.51-58
    • /
    • 2018
  • 본 연구에서는 하중 조건에 따른 지반-말뚝 상호작용 시스템의 거동 차이를 분석하기 위해 일련의 원심모형 실험을 수행하였다. 정적 하중 조건의 경우, 말뚝 직경의 50% 수준까지 변위제어를 통해 하중을 재하하였으며, 지진 하중 조건의 경우 0.1g~0.4g 수준으로 1Hz 정현파를 가진하였다. 실험 결과로부터 얻은 정적 및 동적 p-y 곡선을 API p-y 곡선과 비교한 결과, API p-y 곡선과 정적 하중조건에서의 실험 p-y 곡선은 최대 지반반력 값이 20% 이내의 오차를 보인 반면, 동적 하중 조건에서의 실험 p-y 곡선과는 최대 지반반력 값이 5배 이상 차이가 발생하였다. 이는 등가정적 해석에서 기존 API p-y 곡선을 적용할 경우 비선형 영역에서 지반 반력을 크게 과소평가하며 보수적 설계를 야기할 수 있음을 의미한다.

재하시험 수행에 관한 적정성 연구 : 콘크리트 교량 (A Feasibility Study of Loading Test for Safety Assessment : Concrete Bridges)

  • 황진하;안승수;김주한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권6호
    • /
    • pp.147-155
    • /
    • 2011
  • 심각한 손상, 결함, 재료적인 열화현상 등이 발견되지 않은 교량들은 대부분 설계하중에 대한 안전성을 확보하고 있으나, 주기적으로 시행되는 안전진단에서 건전성이 충분히 입증된 경우조차 대부분 재하시험을 수행하고 있다. 재하시험 필요 여부에 대해서 관련 세부지침에서는 정성적인 기술에 머무르고, 일부 연구들이 응답보정계수 산정 등 내하력 평가에 대한 개선 방안들을 제시하고 있으나, 재하시험의 적정성에 대한 연구는 미미하다. 본 연구는 안전진단에서 재하시험의 관행적 수행에 대한 기존의 의문에 대해 검토하고, 기설 콘크리트 교량들의 상태평가와 내하율 산정 자료 등에 대한 통계 분석을 토대로 재하시험 수행 여부를 포함하는 합리적이고 정량적인 절차적 안전진단 대안을 제시하였다.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.