• 제목/요약/키워드: Loading capacity

검색결과 2,027건 처리시간 0.031초

근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향 (Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile)

  • 김종인;박정준;신은철
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu;Lee, Jaehong;Lee, Do Hyung;Lee, Kihak
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.1-14
    • /
    • 2020
  • This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • 제10권4호
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

Partially restrained beam-column weak-axis moment connections of low-rise steel structures

  • Lim, Woo-Young;Lee, Dongkeun;You, Young-Chan
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.663-674
    • /
    • 2020
  • In this study, partially restrained beam-column moment joints in the weak-axis direction were examined using three large-scale specimens subject to cyclic loading in order to assess the seismic resistance of the joints of low-rise steel structures and to propose joint details based on the test results. The influence of different number of bolts on the moment joints was thoroughly investigated. It was found that the flexural capacity of the joints in the direction of weak axis was highly dependent on the number of high-tension bolts. In addition, even though the flexural connections subjected to cyclic loading was perfectly designed in accordance with current design codes, severe failure mode such as block shear failure could occur at beam flange. Therefore, to prevent excessive deformation at bolt holes under cyclic loading conditions, the holes in beam flange need to have larger bearing capacity than the required tensile force. In particular, if the thickness of the connecting plate is larger than that of the beam flange, the bearing capacity of the flange should be checked for structural safety.

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

프리스트레스를 단계적으로 도입하는 IPC 거더의 설계 이론 연구 (Development of a New Design Theory for Incrementally Prestressed Concrete Girder)

  • 한만엽;김진근;이차돈;박준범
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.121-130
    • /
    • 2000
  • Current engineering practice in determining sectional dimensions of prestressed concrete (PSC) girders for bridges is primarily based on the code-specified allowable concrete stresses at different loading stages. It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occurring at different loading stages within the allowable stresses. This traditional tensioning method, however, usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girders is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. Parametric studies are performed with due considerations given to its practical applications.

슬림 AU 합성보의 전단성능에 관한 실험연구 (Experimental Study on the Shear Capacity of Slim AU Composite Beam)

  • 이미향;오명호;김영호;정석창;김명한
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.99-105
    • /
    • 2017
  • The SLIM AU composite beam consists of U-shaped steel plate, A-shaped steel cap and infilled concrete. The bottom steel plate acts as tension bars, and the top steel cap takes roles of shear connector and compression bars in the conventional reinforced concrete section. In this paper the shear strength of this composite beam with closed steel section has been evaluated through the concentrated loading shear experiments. Test results under the symmetrical and asymmetrical loading conditions were compared with the predicted values based on the KBC 2016. The composite beam showed the greater shear strength capacities than those of the theoretical evaluation.

단조 반복하중이 작용하는 합성슬래브의 거동에 대한 실험적 연구 (An Experimental Study of the Composite Slab under a Repeated Loading)

  • 엄철환;김희철;박진영;서상훈
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.143-148
    • /
    • 2007
  • The application of metal deck floor system is increasing gradually and especially for office buildings. In the cases of large parking structures and storage structures, the construction period and the cost can be reduced. Also the steel deck system can prevent the crack of a floor and reduce the retrofit expenses. However, the floor should stand for the repeated truck load which is relatively heavier repeated loading. The mechanical behavior of a slab under repeated load is also different from the static loading state. An evaluation of a structural capacity was performed in this study through the dynamic capacity evaluation experiment for an application of a composite deck floor system as a parking structure slab. The period of repeated loadings were set up as 25years and 960,000 times monotone cyclic loads were applied at the center of the specimens. The tension crack propagation and patterns at the center of specimens were examined.

System identification and reliability assessment of an industrial chimney under wind loading

  • Tokuc, M. Orcun;Soyoz, Serdar
    • Wind and Structures
    • /
    • 제27권5호
    • /
    • pp.283-291
    • /
    • 2018
  • This study presents the reliability assessment of a 100.5 m tall reinforced concrete chimney at a glass factory under wind loading by using vibration-based identified modal values. Ambient vibration measurements were recorded and modal values such as frequencies, shapes and damping ratios were identified by using Enhanced Frequency Domain Decomposition (EFDD) method. Afterwards, Finite Element Model (FEM) of the chimney was verified based on identified modal parameters. Reliability assessment of the chimney under wind loading was performed by obtaining the exceedance probability of demand to capacity distribution. Demand distribution of the chimney was developed under repetitive seeds of multivariate stochastic wind fields generated along the height of chimney. Capacity distribution of the chimney was developed by Monte Carlo simulation. Finally, it was found that reliability of the chimney is lower than code suggested limit values.

Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns

  • Ji, Xiaodong;Zhang, Mingliang;Kang, Hongzhen;Qian, Jiaru;Hu, Hongsong
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.179-199
    • /
    • 2014
  • The steel tube-reinforced concrete (ST-RC) composite column is a novel type of composite column, consisting of a steel tube embedded in reinforced concrete. The objective of this paper is to investigate the effect of cumulative damage on the seismic behavior of ST-RC columns through experimental testing. Six large-scale ST-RC column specimens were subjected to high axial forces and cyclic lateral loading. The specimens included two groups, where Group I had a higher amount of transverse reinforcement than Group II. The test results indicate that all specimens failed in a flexural mode, characterized by buckling and yielding of longitudinal rebars, failure of transverse rebars, compressive crushing of concrete, and steel tube buckling at the base of the columns. The number of loading cycles was found to have minimal effect on the strength capacity of the specimens. The number of loading cycles had limited effect on the deformation capacity for the Group I specimens, while an obvious effect on the deformation capacity for the Group II specimens was observed. The Group I specimen showed significantly larger deformation and energy dissipation capacities than the corresponding Group II specimen, for the case where the lateral cyclic loads were repeated ten cycles at each drift level. The ultimate displacement of the Group I specimen was 25% larger than that of the Group II counterpart, and the cumulative energy dissipated by the former was 2.8 times that of the latter. Based on the test results, recommendations are made for the amount of transverse reinforcement required in seismic design of ST-RC columns for ensuring adequate deformation capacity.