• 제목/요약/키워드: Loading capacity

검색결과 2,046건 처리시간 0.034초

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계 (Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames)

  • 곽효경;김지은
    • 한국전산구조공학회논문집
    • /
    • 제21권1호
    • /
    • pp.21-34
    • /
    • 2008
  • 이 논문에서는 철근콘크리트 프레임 구조물을 대상으로 직접탐색기법을 도입하여 보다 개선된 유전자 알고리즘을 이용한 최적설계 기법을 제안하고 있다. 먼저 유전자 알고리즘을 이용하여 다양한 초기 가정 단면을 발생시키고, 이로부터 도출되는 각 설계 부재력 조건에 대해 미리 구성한 설계 단면 데이터베이스(DB)를 기반으로 회귀분석과 직접탐색을 이용하여 최적해를 도출한 후 여러 세대에 걸쳐 누적된 결과로부터 전역 최적해(global minimum)를 선택하였다. 제안된 알고리즘은 일반적인 유전자 알고리즘만을 이용할 경우 전역 최적해에 도달하기까지 수렴성이 떨어져서 그 결과 해의 적합도(Fitness)가 저하되는 단점을 보완하여 빠른 수렴성과 함께 최종해의 경제성에서도 향상된 결과를 보인다. 또한, 작용 하중 조건 하에서 전 부재가 최대의 효율로 저항함으로써 보다 경제적인 설계가 되도록 하기 위하여 비선형 해석을 수행하여 도출된 부재력을 바탕으로 설계 단면을 결정하였으며, 제안된 알고리즘을 예제 구조물에 적용하여 그 효율성을 검증하였다.

삼상 유동층 반응조를 이용한 해수 순환 여과 시설의 수처리 (Water Treatment of Seawater Recirculating Aquaculture System by Using Three Phase Fluidized Bed Reactor)

  • 이병헌;최혁;류종수
    • 한국양식학회지
    • /
    • 제13권2호
    • /
    • pp.137-145
    • /
    • 2000
  • 삼상 유동층 반응조의 수처리 효율을 검토하기 위해 해수 순환여과 시설을 운전하였다. 수처리 시스템은 유동층 반응조, 카트리지 필터, 오존접촉조로 구성되어 있고, 전체 운전기간동안 사육조내 수질인자별 평균농도는 각각 COD 9mg/L, 총암모니아(TAN) 0.22mg/L, 아질산성 질소 0.05mg/L, 질산성 질소 20mg/L, 탁도 3.64 NTU, SS 9.5mg/L, pH 7.6, 알칼리도 70mg/L 등으로 나타나 양호한 수질조건을 유지할 수 있었다. 유동층 반응조의 TAN 부하량 범위는 4.3~32.9 g/$m^3$/day였고, 평균 제거율은 20 g/$m^3$/day으로 나타났다. 각 반응조의 TAN 제거율은 47~60%로 나타나 해수에서도 효과적인 암모니아 제거 특성을 나타내었다. 또한 유출수의 비이온성 암모니아 농도는 0.002 mg/L이하로 유지 할 수 있었다

  • PDF

수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구 (The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis)

  • 송민아;하성인;박대영;유철휘;문상봉;강안수;정장훈
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

Methacrylamidohistidine in Affinity Ligands for Immobilized Metal-ion Affinity Chromatography of Human Serum Albumin

  • Odaba, Mehmet;Garipacan, Bora;Dede, Semir;Denizli, Adil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권6호
    • /
    • pp.402-409
    • /
    • 2001
  • Different bioligands carrying synthetic adsorbents have been reported in the literature for protein separation, We have developed a novel and new approach to obtain high protein ad-sorption capacity utilizing 2-methacrylamidohistidine(MAH) as a bioligand. MAH was synthe-sized by reacting methacrylocholride and histidine, Spherical beads with an average size of 150-200㎛ were obtained by the radical suspension polymerization of MAH and 2-hydrosyethyl-methacrylate(HEMA) conducted in an aqueous dispersion medium. p(HEMA-co-MAH) beads had a specific surface area of 17.6㎡/g . Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling test, FTIR and elemental analysis. Then Cu(II) ions were incorporated onto the beads and Cu(II) loading was found to be 0.96 mmol/g.These affinity beads with a swelling ration of 65% and containing, 1.6 mmol MAH/g were used in the adsorption/desorption of human serum albumin(HSA) from both aqueous solutions and hu-man serum. The adsorption of HSA onto p(HEM-co-MAH) was low(8.8 mg/g). Cu(II) chelation onto the beads significantly increased the HSA adsorption (56.3 mg/g). The maximum HSA ad-sorption ws observed at pH 8.0 Higher HSA adsorption was observed from human plasma(94.6 mgHSA/g) Adsorption of other serum proteins were obtained as 3.7 mg/g for fibrinogen and 8.5mg/g for γ-globulin. The total protein adsorption was determined as 107.1mg/g. Desorption of HSA was obtained using 0.1 M Tris/HCl buffer containing 0.5 M NaSCN, High desorption rations(up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cu(II) chelated-p(HEMA-co-MAH) beads without significant decreases in the adsorption capacities.

  • PDF

철근콘크리트 원형기둥의 전단철근 유효단면적 평가 (Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.81-88
    • /
    • 1999
  • 원형 철근콘크리트 기둥의 전단보강철근에 의한 저항강도의 평가를 위하여 전단에 의한 사인장 균열 면을 관통하는 원형 전단보강철근의 횡하중 작용방향의 평균 인장력을 산정하였다 이를 위하여 원형 전단보강철근이 이루는 원의 중심선간 직경, 수직 배근간격 및 기둥축 방향에 대한 사인장 균열면을 고려하였으며, 이들 변수들을 이용하여 원형 전단보강철근의 유효단면적을 계산하는 공식을 제안하였다. 연구결과, 원형 전단보강철근의 유효단면적 계산을 위하여 근 10년 간 사용되어 온 상수 계수가 모든 경우에 일률적으로 사용될 수 없음을 보여주고 있다 즉, 기존에 사용되는 원형전단철근 유효단면적은 기둥의 전단저항강도의 계산에 있어서, 전단철근의 배근간격이 비교적 넓은 비내지진 지역에서는 안전 측의 예측을 하게 되어 구조물의 안전상 큰 문제가 없지만, 배근간격이 촘촘하거나 원통형강관을 사용하게 되는 내진 지역에서는 기둥의 전단저항강도를 실제보다 20% 정도 과하게 예측하여 구조물의 안전에 좋지 않은 결과를 낳을 수도 있다.

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.