• Title/Summary/Keyword: Loading Size

Search Result 1,215, Processing Time 0.035 seconds

Characteristics of Collected Sediments from Road Sweeping and Reduction in the Nonpoint Source Pollutants Loading (도로청소 수거퇴적물의 특성과 비점오염물질 저감효과)

  • Jeong, Kwon;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 2011
  • The stormwater runoff from road or expressway is known as one of important nonpoint pollution sources. To reduce the pollutants discharge from road or expressway, many best management practices(BMPs) have been applied and planned. Among the BMPs, road sweeping can be effective way to prevent pollutant washoff to environment. This study is performed to evaluate the characteristics of particles collected from the road by sweeping car. Size distribution and pollutant concentration of particles were analyzed. Based on the pollutant concentration and the specification of road such as length, width, and unit for pollutant generation, total amount of pollutant to be removed by road sweeping was estimated. Most of sediments collected by road sweeping was classified into sandy soil and fraction of fine grained soil was low. Although the concentrations of pollutants such as heavy metals in road sediments did not exceed the soil contamination criteria, washout of pollutants during sweeping work by spraying water might cause leaching of pollutants contained in sediments and thus resulted in low pollutant concentrations. Reduced amounts of pollutant by road sweeping showed 31.4% TSS reduction for ${\bigcirc}{\bigcirc}$ region and 7.7% TSS for ${\triangle}{\triangle}$ region. Other pollutants showed low reduction rate, because of their leaching by water spraying. Results from this study indicate that detailed and well-planned investigation for the road sweeping is necessary for the accurate estimation of pollutant reduction from road or expressway.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

Processing Techniques of Layer Channel Image for 3D Image Effects (3D 영상 효과를 위한 레이어 채널 이미지의 처리 기법)

  • Choi, Hak-Hyun;Kim, Jung-Hee;Lee, Myung-Hak
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.272-281
    • /
    • 2008
  • A layer channel, which can express effects on 3D image, is inserted to use it on application rendering effectively. The current method of effect rendering requires individual sources in storage and image processing, because it uses individual and mixed management of images and effects. However, we can save costs and improve results in images processing by processing both image and layer channels together. By changing image format to insert a layer channel in image and adding a hide function to conceal the layer channel and control to make it possible to approach image and layer channels simultaneously during loading image and techniques hiding the layer channel by changing image format with simple techniques, like alpha blending, etc., it is developed to improve reusability and be able to be used in all programs by combining the layer channel and image together, so that images in changed format can be viewed in general image viewers. With the configuration, we can improve processing speed by introducing image and layer channels simultaneously during loading images, and reduce the size of source storage space for layer channel images by inserting a layer channel in 3D images. Also, it allows managing images in 3D image and layer channels simultaneously, enabling effective expressions, and we can expect to use it effectively in multimedia image used in practical applications.

A Study on the Safe Transportation of a Non-Standardized Cargo (Steel Box) for General Cargo Ships (일반화물선에서 비표준화물(철재상자)의 안전한 운송을 위한 고찰)

  • Kim, Ji-Hong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.444-449
    • /
    • 2019
  • The "Standard on Cargo Stowage and Securing" implemented to safely stow and secure the cargo of international shipping vessels and domestic car ferries, has also been applied to general cargo ships transported between domestic ports since J anuary 2018. As a result, a new type of cargo, such as a non-standardized steel box transported by general cargo ships to major ports in Korea from Jeju Island in Korea, must be factored as the method of safe stowage and securing according to the legal classification of cargo. This study analyzed the legal status of a steel box by analyzing the actual size, shape of steel box through field verification, collection of data from relevant agencies and finally proposed the methods of safe stowage and securing for a steel box in the cargo holds of general cargo ships. According to the relevant domestic laws and international regulations, steel boxes could be classified as pallette boxes with protective outer packing, a type of non-standardized cargo. Additionally, when a steel box is loaded into the cargo hold of general cargo ships, a method of loading and transporting them must be factored so that there is no gap in the cargo hold of ships. Verification of the safety of the tightly loading and transportation measures in the reviewed cargo hold was verified through safety of the hull structure and securing of the ship's stability. As a result of verification of the safety of the hull structure, the value of the structural strength on both sides and the floor of the cargo hold for the total weight of cargo that can be loaded in the cargo hold was satisfied, and the value of the ship's stability was satisfied with the value of GoM and the restoration of the three cross-sectional stability curve areas.

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

A Study on the Horizontal Consolidation and Permeability Characteristics of Decomposed Mudstone Soil in Pohang (이암풍화토의 횡방향압밀 및 투수특성)

  • 김영수;김기영;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • Consolidation and permeability are major engineering properties of soil. In clay, coefficient of permeability and consolidation can be calculated by incremental loading consolidation test. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, very soft clay and problem of back pressure saturation. Specially, it is not performed with horizontal consolidation test. Several methods have been proposed for obtaining reliable values of $C_v$. Among these, the square root of time-fitting method proposed by Taylor(1948) and logarithm of time-fitting method, also called Casagrande's method, are used extensively in soil engineering practice. But these methods are not amenable for the absence of initial linear portion and have the difficulties involved in distinguishing secondary compression from primary compression. Rowecell consolidation tests were carried out in this study with different trimming axis and sample size. The results were compared with those of other methods; Casagrande,$Taylor,\; Casagrande,\; Hyperbolic,\; \delta/t-logt$. From the results, we explained a relationship between horizontal coefficient of permeability and void ratio was obtained. Finally, the directly measured horizontal coefficient of permeability obtained by using the Rowecell was compared with the permeability derived indirectly from the consolidation test result.

  • PDF

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

Effects of Preflocculated Filler Flocs and Nano-sized Coating Binder on Fold Cracking of Coated Paper (충전물 선응집체 크기와 나노 바인더에 의한 도공지의 접힘터짐 변화)

  • Im, Wanhee;Seo, Dongil;Oh, Kyudeok;Jeong, Young Bin;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • Papermakers wish to increase the filler content of printing and writing grades because it allows saving in production cost through fiber replacement and improving the formation, and optical and printing properties of the paper. However, high filler loading in the base paper has negative side effects. It reduces the mechanical properties of paper and induces cracking at the fold after coating process. Fold cracking is one of the most frequent quality complaints for magazines, high quality books, etc. Two approaches were examined as methods to reduce fold cracking. One approach was to use preflocculated fillers, which was expected to reduce the fold cracking because it would decrease the interfiber bonding. The other approach was to use a new coating binder that gives greater binding power and thereby provides an opportunity of reducing the fold cracking of coated paper. When filler preflocculation was employed in producing the base paper, fold cracking becomes more severe than conventional filler loading condition. On the other hand, use of nano sized binder in coating improved the tensile properties of the coating layer and thereby decreased the crack area. It was shown that tensile properties of coating layer played an important role in fold cracking of coating.

Competitive Solvent Extraction of Alkali Metal Ions with Azacrown Ether Phosphinic Acids (아자크라운에테르포스피닉산에 의한 알카리금속이온의 경쟁용매추출)

  • Nam, Chong-Woo;Chung, Yeong-Jin;Yang, Il-Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.266-272
    • /
    • 1992
  • Azacrownoalkyl phenylphosphinic acids were synthesized and their competitive solvent extraction characteristics from water to chloroform layer were investigated. Phosphinic acids were synthesized in good yields by one step reaction of phenylphosphinate, aldehyde, and monoazacrown ether and then basic hydrolysis of the resulting phosphinate dsters. These complexing agents revealed a wide effective pH range in extraction of alkali metal ions from water to the organic phase and total metal ion loading at pH 11 was about 75%. The selectivity of the cation extraction was determined mainly by the cavity size of the azacrown ethers, showing $Na^+$ >> $K^+$ > $Rb^+$ > $Li^+$ > $Cs^+$ for the alkyl phenylphosphinic acid ${\underline{2}}$, containing monoaza-15-crown-5 and $K^+$ >> $Rb^+$ > $Na^+$ > $Cs^+$ > $Li^+$ for the alkyl phenylphosphinic acid, ${\underline{3}}$, containing monoaza-18-crown-6 moiety. Applicable pH range of these azacrown ether phosphinic acids in solvent extraction of alkali metal cations was wider than a crownether carboxylic acid with similar selectivity, showing considerable amount of metal ion loading in slightly acidic or neutral media.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF