• Title/Summary/Keyword: Loading Size

Search Result 1,215, Processing Time 0.026 seconds

Characteristics of Immobilized Rhodopseudomonas sp. for Wastewater Treatment (폐수처리를 위한 고정화 Rhodopseudomonas sp.균의 특성)

  • 이범규;김상희;김중균
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1999
  • Rhodopseudomonas sp. was immobilized in three supports(agar, k-carrageenan, and PVA) in order to remove nitrate in wastewater coming from fish farm. Among them 3% agar was the most suitable support when denitrification rate and bead durability were tested. Optimum bead size was 4mm-diameter when the substrate transfer into the bead and shear stress for bead were considered, and optimum cell loading was 25mg dry $cells/cm^2$gel gel. Ethanol was the best as a carbon source, and optimum C:N ratio, temperature and pH were 1.5:1, $31^{\circ}C$,, and 6, respectively. Under these conditions the maximum denitrification rate in synthetic wastewater was $$345{\MU}{\ell};N_2/Cm^3 gel{\cdot}hr;and that in modified MYC medium was 450{\MU}{\ell}};N_2/Cm^3 gel{\cdot}hr $$.

  • PDF

Methacrylamidohistidine in Affinity Ligands for Immobilized Metal-ion Affinity Chromatography of Human Serum Albumin

  • Odaba, Mehmet;Garipacan, Bora;Dede, Semir;Denizli, Adil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.402-409
    • /
    • 2001
  • Different bioligands carrying synthetic adsorbents have been reported in the literature for protein separation, We have developed a novel and new approach to obtain high protein ad-sorption capacity utilizing 2-methacrylamidohistidine(MAH) as a bioligand. MAH was synthe-sized by reacting methacrylocholride and histidine, Spherical beads with an average size of 150-200㎛ were obtained by the radical suspension polymerization of MAH and 2-hydrosyethyl-methacrylate(HEMA) conducted in an aqueous dispersion medium. p(HEMA-co-MAH) beads had a specific surface area of 17.6㎡/g . Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling test, FTIR and elemental analysis. Then Cu(II) ions were incorporated onto the beads and Cu(II) loading was found to be 0.96 mmol/g.These affinity beads with a swelling ration of 65% and containing, 1.6 mmol MAH/g were used in the adsorption/desorption of human serum albumin(HSA) from both aqueous solutions and hu-man serum. The adsorption of HSA onto p(HEM-co-MAH) was low(8.8 mg/g). Cu(II) chelation onto the beads significantly increased the HSA adsorption (56.3 mg/g). The maximum HSA ad-sorption ws observed at pH 8.0 Higher HSA adsorption was observed from human plasma(94.6 mgHSA/g) Adsorption of other serum proteins were obtained as 3.7 mg/g for fibrinogen and 8.5mg/g for γ-globulin. The total protein adsorption was determined as 107.1mg/g. Desorption of HSA was obtained using 0.1 M Tris/HCl buffer containing 0.5 M NaSCN, High desorption rations(up to 98% of the adsorbed HSA) were observed. It was possible to reuse Cu(II) chelated-p(HEMA-co-MAH) beads without significant decreases in the adsorption capacities.

  • PDF

Electrically Small Eighth-Mode Substrate-Integrated Waveguide(EMSIW) Antenna Loading Complementary Split Ring Resonator(CSRR) (상보적 분할 링 공진기를 이용한 전기적으로 작은 1/8 모드 기판 집적형 도파관 안테나)

  • Kang, Hyunseong;Sam, Somarith;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.686-693
    • /
    • 2013
  • Based on a substrate integrated waveguide(SIW) and a complementary split ring resonator(CSRR), electrically small antennas are proposed in this paper. Antenna's electrical size is reduced by introducing both CSRR and the eighth-mode substrate integrated waveguide(EMSIW). The EMSIW occupies only 12.5 % of the conventional SIW at the same dominant resonant frequency. In addition, the resonant frequency of the antenna is varied by rotating the CSRR on the EMSIW while keeping the same radiation patterns. The resonant frequency is changed from 4.74 GHz to 5.07 GHz by varying orientation of the CSRR from 0 to 360 degree. Unidirectional radiation patterns are observed and the measured peak gains are from 4.50 to 5.92 dBi.

Finite Element Anmllysis of Adiabatic Shear Band (단열 전단 밴드의 유한요소 해석)

  • 유요한;전기영;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1519-1529
    • /
    • 1992
  • A stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element code. The material model for specimen includes effects of thermal softening, strain hardening and strain rate hardening. Various mesh sizes are tested to check whether they are small enough to model highly localized discontinuous phenomena reasonably well. It is shown that the number of adiabatic shear band depends on impact velocity and it is also shown that the initiation and growth of adiabatic shear band inversely depends on prescribed velocity at the top of specimen.

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

A Study on Rock Fragmentation Variation by Delay Time (지연시차에 따른 파쇄입도 변화에 관한 연구)

  • Jin, Yeon-Ho;Min, Hyung-Dong;Park, Yoon-Suk;Heo, Eui-Haeng;Choi, Sung-Oong;Lee, Seung-Joong
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Since the rock fragmentation from a bench blasting can affect the subsequent processes including loading, hauling and crushing, its control is essential for the assessment of blasting efficiency as well as production cost. In this study, the delay time could be precisely controlled by using electronic detonators. The rock fragmentations resulted from the blastings with different delay times of 1, 2, 3, 4, 5, 7 and 10ms per each meter of burden were measured from full scale field tests in a limestone mine. The results showed that the optimum delay time for minimum fragmentation was approximately 6ms/m. From the analysis of fragmentation size distribution, it was possible to find that delay time can be a parameter on rock fragmentation and thus it would be possible to control rock fragmentation by adjusting delay time.

Distribution of Inorganic Phosphorus Fractions in Sediments of the South Han River over a Rainy Season

  • Vo, Nguyen Xuan Que;Ji, Yoonhwan;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.229-240
    • /
    • 2014
  • Rain events are extremely important for phosphorus (P) dynamics in rivers since large portions of annual river P loads can be transported in particulate forms during only a few major events. Despite their importance, a precise estimation of P contribution in river sediments after rainy seasons has rarely been reported. This study estimated the longitudinal variation in the concentrations of different inorganic P fractions in bed sediments of the South Han River over a rainy season, through using the sequential extraction method. Non-apatite P was the dominant form, representing more than 60% of total inorganic P (TIP) content in sediments. Although no significant variation of TIP contents was observed, the proportion of bioavailable P in TIP pools decreased after the rainy season. The concentrations of individual inorganic P fractions ($NH_4Cl-P$, $NH_4F-P$, NaOH-P, and $H_2SO_4-P$) were significantly different across sites and after the rainy season (p < 0.05, two-way ANOVA). $NH_4F-P$ and NaOH-P concentrations in sediments increased in a downstream direction. After the rainy season, $NH_4Cl-P$ concentrations in sediments decreased whereas $NH_4F-P$ and $H_2SO_4-P$ concentrations increased. The redistribution of individual P fractions in sediments observed after rainy seasons were possibly due to the changing contribution of various sources of runoff and the variation in flow related particle size. Current estimation of P in bed sediments of the South Han River suggests a lower potential of internal P loading from sediments after the rainy season.

Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season (홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정)

  • Hong, Won Pyo;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

A Prediction Model of Resilient Modulus for Recycled Crushed-Rock-Soil-Mixture (재활용 암버력 - 토사의 회복탄성계수 예측 모델)

  • Park, In-Beom;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.147-155
    • /
    • 2010
  • A prediction model of resilient modulus($E_R$) was developed for recycled crushed-rock-soil mixtures. The evaluation of $E_R$, using the "orthodox" repeated loading tri-axial test, is not feasible for such a large-size gravelly material. An alternative method was proposed hereby using the subtle different modulus called nonlinear dynamic modulus. The prediction model was developed by utilizing in-situ measured shear modulus($G_{max}$) and its reduction curves of modeled materials using the large free-free resonant column test. A pilot evaluation of the model parameters was carried out for recycled crushed-rock-soil-mixture at a highway construction site near Gimcheon, Korea. The values of the model parameters($A_E,\;n_E,\;{\varepsilon}_r\;and\;{\alpha}$) were proposed as 9618, 0.47, 0.0135, and 0.8, respectively.