• Title/Summary/Keyword: Loading History

Search Result 343, Processing Time 0.034 seconds

Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios;Iakovidis, Pantelis E.
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.115-129
    • /
    • 2019
  • The effectiveness of an innovative method for the earthquake-resistant rehabilitation of existing poorly detailed reinforced concrete (RC) structures is experimentally investigated herein. Eight column subassemblages were subjected to earthquake-type loading and their hysteretic behaviour was evaluated. Four of the specimens were identical and representative of columns found in RC structures designed in the 1950s-70s period for gravity load only. These original specimens were subjected to cyclic lateral deformations and developed brittle failure mechanisms. Three of the damaged specimens were subsequently retrofitted with innovative high-strength steel fiber-reinforced concrete (HSSFC) jackets. The main variables examined were the jacket width and the contribution of mesh steel reinforcement in the seismic performance of the enhanced columns. The influence of steel fiber volume fraction was also examined using test results of a previous work of Tsonos et al. (2017). The fourth earthquake damaged subassemblage was strengthened with a conventional RC jacket and was subjected to the same lateral displacement history as the other three retrofitted columns. The seismic behaviour of the subassemblages strengthened according to the proposed retrofit scheme was evaluated with respect to that of the original specimens and that of the column strengthened with the conventional RC jacket. Test results clearly demonstrated that the HSSFC jackets effectively prevented the development of shear failure mechanisms, while ensuring a ductile seismic response similar to that of the subassemblage retrofitted with the conventional RC jacket. Ultimately, an indisputable superiority in the overall seismic performance of the strengthened columns was achieved with respect to the original specimens.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

Measurement of nuclear fuel assembly's bow from visual inspection's video record

  • Dusan Plasienka;Jaroslav Knotek;Marcin Kopec;Martina Mala;Jan Blazek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1485-1494
    • /
    • 2023
  • The bow of the nuclear fuel assembly is a well-known phenomenon. One of the vital criteria during the history of nuclear fuel development has been fuel assembly's mechanical stability. Once present, the fuel assembly bow can lead to safety issues like excessive water gap and power redistribution or even incomplete rod insertion (IRI). The extensive bow can result in assembly handling and loading problems. This is why the fuel assembly's bow is one of the most often controlled geometrical factors during periodic fuel inspections for VVER when compared e.g. to on-site fuel rod gap measurements or other instrumental measurements performed on-site. Our proposed screening method uses existing video records for fuel inspection. We establish video frames normalization and aggregation for the purposes of bow measurement. The whole process is done by digital image processing algorithms which analyze rotations of video frames, extract angles whose source is the fuel set torsion, and reconstruct torsion schema. This approach provides results comparable to the commonly utilized method. We tested this new approach in real operation on 19 fuel assemblies with different campaign numbers and designs, where the average deviation from other methods was less than 2 % on average. Due to the fact, that the method has not yet been validated during full scale measurements of the fuel inspection, the preliminary results stand for that we recommend this method as a complementary part of standard bow measurement procedures to increase measurement robustness, lower time consumption and preserve or increase accuracy. After completed validation it is expected that the proposed method allows standalone fuel assembly bow measurements.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

CLINICAL CHARACTERISTICS OF CHILD AND ADOLESCENT PSYCHIATRIC INPATIENTS WITH MOOD DISORDER (입원한 기분장애 소아청소년의 임상특성 - 주요 우울증과 양극성장애의 우울삽화 비교를 중심으로 -)

  • Cho, Su-Chul;Paik, Ki-Chung;Lee, Kyung-Kyu;Kim, Hyun-Woo;Hong, Kang-E;Lim, Myung-Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.11 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • The purpose of this study is to find out the characteristics of depressive episode about major depression and bipolar disorder in child and adolescent. The subjects of this study were 34 major depression patients and 17 bipolar disorder patients hospitalized at child and adolescent psychiatry in OO university children's hospital from 1st March 1993 to 31st October 1999. The method of this study is to review socio-demographic characteristics, diagnostic classification, chief problems and symptoms at admission, frequency of symptoms, maternal pregnancy problem history, childhood developmental history, coexisting psychiatric disorders, family psychopathology and family history and therapeutic response through their chart. 1) The ratio of male was higher than that of female in major depressive disorder while they are similar in manic episode, bipolar disorder. 2) Average onset age of bipolar disorder was 14 years 1 month and it was 12 years 8 months in the case of major depression As a result, average onset age of major depression is lower than that of bipolar disorder. 3) The patients complained of vegetative symptoms than somatic symptoms in both bipolar disorder and depressive disorder. Also, the cases of major depression developed more suicide idea symptom while the case of bipolar disorder developed more aggressive symptoms. In the respect of psychotic symptoms, delusion was more frequently shown in major depression, but halucination was more often shown in bipolar disorder. 4) Anxiety disorder coexisted most frequently in two groups. And there coexisted symptoms such as somartoform disorder, mental retardation and personality disorder in both cases. 5) The influence of family loading was remarkable in both cases. Above all, the development of major depression had to do with child abuse history and inappropriate care of family. It is apparent that there are distinctive differences between major depression and bipolar disorder in child and adolescent through the study, just as in adult cases. Therefore the differences of clinical characteristics between two disorders is founded in coexisting disorders and clinical symptoms including onset age, somatic symptoms and vegetative symptoms.

  • PDF

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

A Comparative Study on the Commitment of Health Manager Between Industrial Health Nurse and Industrial Hygienist (보건관리자의 직능별 직업 및 조직 헌신도에 대한 비교 연구)

  • Rhee, Kyung Yong;Lee, Ki Beom;Allen, Natalie J.;Cho, Young Sook
    • Korean Journal of Occupational Health Nursing
    • /
    • v.7 no.1
    • /
    • pp.65-82
    • /
    • 1998
  • This study was carried out in order to confirm the reliability and validity of the commitment inventory developed by Meyer and Allen, and to investigate commitment level of health manager, to compare two different professionals of health manager such as industrial health nurse and industrial hygienist to find out some characteristics that have effect on commitment. This survey was done by self-administered questionnaire to 227 respondents as the trainees of Industrial Safety Training Center, KISCO from June to December 1996. Authors classified commitment into two categories ; professional commitment and organizational commitment, and these two types of commitments have three different aspects ; affective, continuance, and normative commitment based on Meyer's inventory. The results were as follows; 1. Items of whole scales of the both type of commitments have three factors that represent three aspects of commitment ; affective, continuance, and normative commitment. This means that each type of commitment was reliable to use as measurement tool of three different aspects of commitment. Classification of items by factor analysis was more consistent in professional commitment than organizational commitment. Among 16 items of organizational commitment, four items were classified into different aspects of commitment with similar factor loading. 2. Commitment level of industrial health nurse was higher than that of industrial hygienist in affective, continuance professional commitment controlled by other characteristics. These differences can be due to other characteristics of specific task and background of health managers that were not used in this study. 3. The level of affective professional commitment was statistically different in age, sex, educational level, and that of organizational commitment was statistically different in only two variables such as age, and job tenure. The level of continuance professional and organizational commitments were different in sex group, but past history of employment have effect on continuance organizational commitment. The level of normative organizational commitment was affected by only age. As the above results, the tools of measurement of commitment developed by Meyer and Allen can be useful to measure the level of commitment of health manager. Three aspects of two types of commitments were influenced by different characteristics of health manager. Authors suggested future study on the affecting variables to the commitment such as background, task of health manager and organizational characteristics.

  • PDF