• 제목/요약/키워드: Loading History

검색결과 343건 처리시간 0.027초

슬관절 테이핑요법이 혈중통증물질인 ${\beta}$-endorphin과 serotonin에 미치는 영향 (The Effects of Knee Joint Taping Yherapy on ${\beta}$-endorphin and Serotonin of Pain Substances of Blood)

  • 양경한;한종만;유왕근
    • 대한예방한의학회지
    • /
    • 제12권2호
    • /
    • pp.185-195
    • /
    • 2008
  • The purpose of this investigation is comparing two groups one applied with taping therapy the other with controlled causes variation in pain substances of blood ${\beta}$-endorphin, serotonin with taping therapy. 12 male students of S college divided into two groups each 6 experimental and controlled with no history of flexion and extention of lower extremity focused on knee joint. Experimental group applied with elastic taping before experiment at quadriceps, calf muscles, hamstrings and tibialis anterior, controlled group didn't applied any taping therapy. Bruce protocol of maximal progressive loading exercise implemented 5 minutes after blood samples were extracted. And 5 minutes after the exercise blood samples also were taken and made investigation. Data before and after investigation were operated on SPSS Ver. 12.0 for Window(Kor.). P value 0.05. The affirmative effects of this investigation was proved with increased ${\beta}$-endorphin and decreased serotonin that cause reducing pain.

  • PDF

유병자 보험의 보장성 확대를 위한 유병자들의 중증질환 발생률 비교 (Comparison of Severe Disease Incidence among Eligible Insureds to Expand Coverage for Substandard Risks)

  • 백혜연;손지훈;신지민
    • Journal of health informatics and statistics
    • /
    • 제43권4호
    • /
    • pp.318-328
    • /
    • 2018
  • Objectives: People are living longer, but often with diseases or chronic conditions. As a consequence, interest in resolving insurance blind spots is growing. This study provides substandard risk-relevant statistics to help substandard risks who are likely to fall in insurance blind spots obtain insurance coverage, such as the reimbursement of medical costs, as well as to stimulate insurance product development. Methods: This study uses National Health Insurance Service (NHIS) cohort data to determine the relevant statistics. The incidence rates of severe diseases are derived and compared against standard risks to establish a set of relative risk factors. These incidence rates of standard and substandard risks are then compared. Results: Currently, an individual's cancer history is used in the underwriting process for simplified issue insurance. However, underwriting focusing on hospitalization and procedures related to serious illnesses could lower premiums for substandard risks. Moreover, the statistical results could be used to expand the coverage of health insurance products. Conclusions: This study's relative risk factors can be used to derive simplified issue premium rates for substandard risks. They can also be used to implement discount and loading schemes for medical reimbursement insurance and help insurance companies implement proactive risk management.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

Optimization of modal load pattern for pushover analysis of building structures

  • Shayanfar, Mohsen Ali;Ashoory, Mansoor;Bakhshpoori, Taha;Farhadi, Basir
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.119-129
    • /
    • 2013
  • Nonlinear Static Procedures (NSPs) have been developed as a practical tool to estimate the seismic demand of structures. Several researches have accomplished to minimize errors of NSPs, namely pushover procedures, in the Nonlinear Time History Analysis (NTHA), as the most exact method. The most important issue in a typical pushover procedure is the pattern and technique of loading which are extracted based on structural dynamic fundamentals. In this paper, the coefficients of modal force combination is focused involving a meta-heuristic optimization algorithm to find the optimum load pattern which results in a response with minimum amount of errors in comparison to the NTHA counterpart. Other parameters of the problem are based on the FEMA recommendations for pushover analysis of building structures. The proposed approach is implemented on a high-rise 20 storey concrete moment resisting frame under three earthquake records. In order to demonstrate the effectiveness and robustness of the studied procedure the results are presented beside other well-known pushover methods such as MPA and the FEMA procedures, and the results show the efficiency of the proposed load patterns.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

소형전기청소차(Small E-Sweeper) 프레임의 실험 및 수치해석을 통한 구조강도 연구 (An Experimental and Numerical Investigation of the Structural Durability of Vehicle Frames in Small Electric Sweepers)

  • 조규춘;이지선;신행우;장명균;유직수;정민관
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.116-124
    • /
    • 2021
  • In this study, the reliability of vehicle frames employed in small electric road sweepers was assessed through durability testing. The frames were tested under three conditions, whereby mechanical loads were applied to (1) the entire frame, (2) the front frame, and (3) the rear frame. The strain distributions in the loaded frames were determined through a combination of direct strain gauge measurements and supplementary numerical analysis. While subtle differences were observed between the experimental and numerical analyses, both methods successfully yielded comparable deformation patterns. Thus, the dependence of stress distribution and the state of the frame on loading conditions could be fully identified through our combined structural and numerical analysis.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.