• 제목/요약/키워드: Loading Application Angle

검색결과 45건 처리시간 0.026초

Experimental and analytical behavior of stiffened angle joints

  • Wang, Peng;Pan, Jianrong;Wang, Zhan;Chen, Shizhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2018
  • The application of rib stiffeners is common on steel connections, with regard to the stiffened angle connection, experimental results about the influence of stiffeners under monotonic and cyclic loading are very limited. Consequently, this paper presents the experimental investigation on four types angle connections with or without stiffener under static loading and another four type stiffened angle connections subjected to cyclic loading. The static experimental result showed that the rib stiffener weld in tension zone of the connection greatly enhanced its initial rotational stiffness and flexural strength. While a stiffener was applied to the compression zone of the connection, it had not obvious influences on the initial rotational stiffness, but increased its flexural strength. The moment-rotation curves, skeleton curves, ductility, energy dissipation and rigidity were evaluated under cyclic loading. Stiffened top-and-seat angle connections behaved as semi-rigid and partial strength, and rotation of all stiffened angle connections exceeded 0.04rad. The failure modes between monotonic and cyclic loading test were completely different and indicated certain robustness.

응력비 변화에 따른 혼합모드 피로균열 전파거동 (The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio)

  • 송삼홍;최지훈;이정무
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동 (Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio)

  • 송삼홍;최지훈;이정무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects)

  • 송삼홍;신승만;이정무;서기정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

다단계 피로하중 실험을 통한 균열 발생 및 전파단계에서 파괴모드 II 영향 분석 (Effects of Failure Mode II on Crack Initiation and Crack propagation Steps Using Multilevel Fatigue Loading Test)

  • 홍석표;박세민;김주희
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.853-860
    • /
    • 2017
  • 본 연구는 균열 발생 및 전파단계에서 하중모드 II의 영향을 평가하기 위해 피로균열 하한계 영역의 혼합모드 I+II 하중을 통해 실험적으로 평가하였다. 균열 발생단계(Stage I)에서는 혼합모드상태에서 하중작용 각도(${\theta}$)가 증가할수록 모드 II 영향으로 인하여 낮은 하중에서 균열이 발생하고, 균열 전파단계 (Stage II)에서는 균열전파 속도는 감소하였다. 다단계 하중작용 각도변화에 따른 하중모드 II영향은 균열전파단계 실험을 통해 평가하였다. 혼합모드 I+II 하중 작용 시 작용각도 ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$) 증가에 따라 피로균열전파속도는 감소하였으며 늦게 발생한 균열에서도 마찬가지로 감소하였다. 작용각도가 ${\theta}{\geq}75^{\circ}$ 범위에서는 하중작용각도 증가에 따라 피로균열전파속도가 증가하고 피로수명이 감소하는 것을 확인하였다.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

소형 무인헬기를 이용한 항공방제기술 (III) - 로터부의 양력시험 - (Aerial Application Using a Small RF Controlled Helicopter (III) - Lift Test of Rotor System -)

  • 구영모;석태수;신시균;이채식;강태경
    • Journal of Biosystems Engineering
    • /
    • 제31권3호
    • /
    • pp.182-187
    • /
    • 2006
  • Aerial application using an unmanned agricultural helicopter can reduce labor and pollution. The development of an agricultural helicopter became urgent for both precise and timely spraying. In this study, a rotor system for unmanned helicopter capable of 20 $kg_f$ payload, was developed and lift capability was evaluated. A lift force over the dead weight of the helicopter was obtained at the pitch angle of $6^{\circ}$. As the pitch angle increased to $8^{\circ}\;and\;10^{\circ}$, the total lift increased to $74{\sim}81\;kg_f\;and\;86{\sim}93\;kg_f$, respectively. A range of engine speed at the rated flight condition, lifting mean payload of 23 $kg_f$ was determined. The data acquired from this study will be used for designing tail system and RF console in the next stage of the research. The rated lift capability was enough for loading 20 liters of spray material including spraying equipments.

Cyclic mechanical model of semirigid top and seat and double web angle connections

  • Pucinotti, Raffaele
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.139-157
    • /
    • 2006
  • In this paper, a cyclic mechanical model is presented to simulate the behaviour of top and seat with web angle beam-to-column connections. The introduced mechanical model is compared with Eurocode 3 Annex J, its extension, and with experimental data. To have a better insight regarding the actual response of the joints, available results of the experiments, carried out on full-scale top and seat angle joints under monotonic and cyclic loading, are first considered. Subsequently, a finite element model of the test setup is developed. The application of the proposed model, its comparisons with the experimental curves and with the Eurocode 3 Annex J and with its modification, clearly show the excellent quality of the model proposed.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

강봉으로 보강된 프리캐스트 프리스트레스 옹벽의 동적 안정성 평가 (Evaluation of Dynamic Stability for Precast and Prestressed Wall reinforced by Steel Pipe)

  • 이일화;이수형;최찬용;금창준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2006
  • The advantages of precast production are fast construction, reduction of labor and insurance of good quality. In recently, the application of the precast production is increased in the earth retaining wall field. This paper presents the results of the numerical modelling that was carried out to evaluate the stability of precast and prestressed earth retaining wall under dynamic train loading. The two-dimensional explicit dynamic finite element method (ABAQUS) was used to carry out the numerical analyses. The train loading to act track is calculated by using the real measured phase angle data. Mainly, the displacement and acceleration of wall structure in time domain analyzed to evaluate the stability under the dynamic train load.

  • PDF