• 제목/요약/키워드: Load-lateral displacement

검색결과 433건 처리시간 0.026초

Study on critical buckling load calculation method of piles considering passive and active earth pressure

  • Chen, Yong-Hui;Chen, Long;Xu, Kai;Liu, Lin;Ng, Charles W.W.
    • Structural Engineering and Mechanics
    • /
    • 제48권3호
    • /
    • pp.367-382
    • /
    • 2013
  • Different types of long slender pile shall buckle with weak soil and liquefied stratum surrounded. Different from considering single side earth pressure, it was suggested that the lateral earth pressure can be divided into two categories while buckling: the earth pressure that prevent and promotes the lateral movement. Active and passive earth pressure calculation model was proposed supposing earth pressure changed linearly with displacement considering overlying load, shaft resistance, earth pressure at both sides of the pile. Critical buckling load calculation method was proposed based on the principle of minimum potential energy quoting the earth pressure calculation model. The calculation result was contrasted with the field test result of small diameter TC pile (Plastic Tube Cast-in-place pile). The fix form could be fixed-hinged in the actual calculation assuring the accuracy and certain safety factor. The contributions of pile fix form depend on the pile length for the same geological conditions. There exists critical friction value in specific geological conditions that the side friction has larger impact on the critical buckling load while it is less than the value and has less impact with larger value. The buckling load was not simply changed linearly with friction. The buckling load decreases with increased limit active displacement and the load tend to be constant with larger active displacement value; the critical buckling load will be the same for different fix form for the small values.

편토압 및 측압이 터널거동에 미치는 영향 (Influence of eccentric load and lateral earth pressure on the tunnel behavior)

  • 안현호;서병욱;김동현;민동호;이선복;이석원
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.219-228
    • /
    • 2007
  • 본 연구에서는 축소모형실험을 통하여 편토압 및 측압이 터널 거동에 미치는 영향을 연구하였다. 모형실험 결과의 타당성은 수치해석을 통하여 검토하였다. 터널에 작용하는 편토압을 감소시킬 수 있는 방안으로 편향 배치된 지보구조를 제안하고 이 방안의 적용성을 검토하였다. 실험 결과, 편향 배치된 지보구조를 적용함으로서 발생되는 변위가 전체적으로 줄어들었고, 초기 균열이 발생되는 하중도 증가되었다. 또한 터널의 안정성에 크게 문제가 되는 최대 편압 수직하중 역시 증가함을 알 수 있었다. 터널에 작용하는 측압의 영향을 검토한 결과, 측압계수의 변화에 따라 변위 발생 양상 및 균열 발생 양상이 매우 변화함을 알 수 있었다. 또한, 안정성 측면에서 취약점을 나타내는 부분도 변화함을 알 수 있었다.

  • PDF

기존선에서 가설교량 시공에 따른 열차의 주행안전성 평가 (Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway)

  • 엄기영;배재형;최찬용
    • 한국철도학회논문집
    • /
    • 제14권3호
    • /
    • pp.234-239
    • /
    • 2011
  • 선로하부를 굴착한 후의 가설교량 설치공법은 이동형 가로보를 갖는 공법으로 시공시 전차선 차단 및 레일절단이 불필요하고 열차운행 횟수가 많은 복선부에서도 적용 가능한 공법이다. 본 논문에서는 공사구간이 곡선부(R400)구간으로 가설교량 공법 시공 후의 변위특성을 검토하기 위해 변위계를 설치하고 열차 통과 시의 윤중 횡압을 계측하여 곡선부(R400)의 주행안전성 검토를 평가하였다. 측정결과 가설교량을 통과시 열차종별 윤중과 횡압의 최대값은 각각 국외 궤도성능평가 기준의 51%, 81% 수준으로 분석되어 윤중, 횡압 발생에 따른 궤도 안전성 측면에서는 큰 문제가 없을 것으로 판단된다. 또한 주행안전성의 평가기준이 되는 최대 탈선계수와 최대 윤중감소율은 열차종별에 관계없이 허용한계치의 49% 수준으로 그 기준치에는 못 미치는 것으로 나타나 열차 통과시의 주행안전성 확보에는 큰 문제가 없는 것을 알 수 있었다.

반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석 (Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test)

  • 정상섬;송성욱;김병철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구 (A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground)

  • 강희준;오일록;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

Complete collapse test of reinforced concrete columns

  • Abdullah, Abdullah;Takiguchi, Katsuki
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.157-168
    • /
    • 2001
  • In this paper, experimental investigation into the behavior of reinforced concrete (RC) columns tested under large lateral displacement with four different types of loading arrangements is presented. Each loading arrangement has a different system for controlling the consistency of the loading condition. One of the loading arrangements used three units of link mechanism to control the parallelism of the top and bottom stub of column during testing, and the remaining employed eight hydraulic jacks for the same purpose. The loading systems condition used in this investigation were similar to the actual case in a moment-resisting frame where the tested column was displaced in a double curvature. Ten model column specimens, divided into four series were prepared. Two columns were tested monotonically until collapse, and unless failure took place at an earlier stage of loading, the remaining eight columns were tested under cyclic loading. Test results indicated that the proposed system to keep the top and bottom stubs parallel during testing performed well.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

모래지반에서 반복수평하중을 받는 말뚝의 영구변형 (Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads)

  • 백규호;박원우
    • 한국지반공학회논문집
    • /
    • 제26권11호
    • /
    • pp.63-73
    • /
    • 2010
  • 해상풍력발전기의 기초로 사용되는 단말뚝은 풍력과 파랑하중에 의해 큰 크기의 반복수평하중을 받는다. 본 연구에서는 모래지반에서 반복수평하중을 받는 항타말뚝의 거동 특성을 조사하기 위해서 가압토조와 길이가 다른 3개의 모형말뚝을 이용해서 모형말뚝재하시험을 수행하였다. 실험결과에 따르면 하중의 최초 재하는 그 이후에 가해지는 반복재하보다 말뚝의 수평변위를 크게 발생시키고, 반복하중의 재하횟수가 증가함에 따라 1회 재하로 인해 발생하는 말뚝의 수평변위량은 감소하는 것으로 나타났다. 하중의 한방향 반복재하는 말뚝의 영구수평변위를 재하방향으로 증가시킨 반면, 양방향 반복재하는 최초 재하방향과 반대방향으로 말뚝의 영구수평변위를 증가시켰다. 그리고 반복 하중으로 인한 말뚝의 영구수평변위는 지반의 상대밀도가 감소하거나 말뚝에 가해지는 반복하중의 크기가 커질수록 급격히 증가하였고, 지반의 토압계수나 말뚝의 근입길이 변화에는 크게 영향을 받지 않았다. 또한 모형실험의 결과에 근거해서 하중이 한방향으로 반복재하될 때 말뚝의 영구수평변위와 영구회전각을 예측할 수 있는 산정식을 제안하였다.

플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구 (Ductility of Column-Slab eoint in R/C Flat Plate System)

  • 김형기;박복만
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.