• Title/Summary/Keyword: Load-displacement

Search Result 2,780, Processing Time 0.027 seconds

A Study on the Behavior of the Plane Stress Fracture Toughness - About the Compact Tension Specimen- (平面應力 破壞靭性値 擧動에 관한 硏究)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.937-946
    • /
    • 1986
  • In this paper, the plane stress fracture toughness of low carbon steel with 3mm thickness is investigated for various specimen widths and crack ratios using the J integral. The experiments is carried out for the compact tension(CT) specimen on an Instron machine. For materials that may be approximated by the Ramberg and Osgood stress strain law, the relevant crack parameter like the J integral and load line displacement are approximately normalized. Crack driving forces in terms of J integral is computed using the above estimation scheme. Abtained results are summarized as follows. (1) The plane stress fracture toughness, J$_{c}$, is almost constant in the range 50-70mm of width. Hence J$_{c}$ can be obtained by using smaller specimen than ASTM standard. (2) Yoon's and Simpson's formular which considers crack growth in obtaining J integral show more consevative J than Rice's and Merkle's (3) J$_{c}$ is almost constant in the range 0.499-0.701 crack ratios tested. J$_{c}$ obtained by using Kumar's formular is 28.14kgf/mm for base metal specimen and 32.51kgf/mm for annealed. (4) Comparison of the prediction with actual experimental measurements by Yoon's formular show good agreement for several different-size specimens.

Fatigue Failure Behavior of Pipe Bends with Local Wall-Thinning Under Cyclic Bending Condition (반복굽힘 조건에서 감육 곡관의 피로손상 거동)

  • Yoon, Min-Soo;Kim, Jin-Weon;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1227-1234
    • /
    • 2012
  • In this study, fatigue tests were carried out using real-scale pipe bend specimens with wall-thinning defects under a cyclic bending load together with a constant internal pressure of 10 MPa. The wall-thinning defect was located at the extrados and the intrados of the pipe bend specimens. A fully reversed cyclic in-plane bending displacement was applied to the specimens. For the pipe bends with wall thinning at the extrados, an axial crack occurred at the crown of the pipe bend rather than at the extrados where the defect was located. In addition, the fatigue life was longer than that of a sound pipe bend predicted from the design fatigue curve in ASME Sec.III, and it was less dependent on the axial length of the wall-thinning defect. For the pipe bends with wall thinning at the intrados, a circumferential crack occurred at the intrados. In this case, the fatigue life was much shorter than that of a sound pipe bend predicted from the design fatigue curve, and it clearly decreased with decreasing axial length of the wall-thinning defect.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

Structural Performance Tests of Down Scaled Composite Wind Turbine Blade using Embedded Fiber Bragg Grating Sensors

  • Kim, Sang-Woo;Kim, Eun-Ho;Rim, Mi-Sun;Shrestha, Pratik;Lee, In;Kwon, Il-Bum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • In this study, the structural performance tests, i.e., static tests and dynamic tests of the composite wind turbine blade, were carried out by using the embedded fiber Bragg grating (FBG) sensors. The composite wind turbine blade used in the test is the 1/23 scale of the 750 kW composite blade. In static tests, the deflections along the blade were evaluated. Evaluations were carried out with simple beam theory and quadratic fitting method by using the embedded FBG sensors to predict the structural behavior with respect to the load. The deflections were compared to those obtained from the laser displacement sensor and electric strain gauges. They showed good agreement. Modal tests were performed to investigate the dynamic characteristics using the embedded FBG sensors. The natural frequencies obtained from the FBG sensors corresponding to the nine mode shapes of the blade were compared to those from the laser Doppler vibrometer. They were found to be consistent with each other. Therefore, it is concluded that the embedded FBG sensors have a great capability for measuring the structural performances of the composite wind turbine blade when structural performance tests are carried out.

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio (Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가)

  • 이동길;양훈승;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

A Study on the Behavior of Piled Abutment Subjected to Lateral Soil Movement of Soft Ground Improved by Deep Cement Mixing Method (DCM 공법으로 개량된 연약지반의 측방유동을 받는 교대 말뚝기초의 거동 분석에 관한 연구)

  • Choi, Yeonho;Kang, Gyeongho
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • The construction on these flimsy ground, activation of unsymmetrical surcharges, can often cause of the embankment road lateral flow or the destruction of the activities. In this study, the stability of the abutment pile foundation installed on soft ground and its behavior has been evaluated. The behavior of the abutment pile foundation under lateral flow was studied by verifying the behavior and reinforcement effects of the abutment pile foundation of previous studies about horizontal loads acting on the pile due to the lateral flow of the ground by performing finite element analysis. As a result of the consolidation analyses, the undrained cohesion or the strength of the soft ground, was increased by about 1.1 to 1.8 times by the increase in the strength of the soft ground according to the degree of consolidation. It is deemed reasonable to use 3.8 cm of the allowable displacement both economically and constructively, but considering the importance of the structure and the uncertainty of the ground, measurement shall be carried out during construction and thorough safety management of the lateral flow should be done.

Improvement and Evaluation of Structural Performance of Reinforced Concrete Beam using High Ductile Fiber-Reinforced Mortar with Ground Granulated Blast Furnace Slag (고로슬래그미분말을 혼입한 고인성섬유 복합모르타르를 이용한 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Lee, Dong-Ryul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.142-152
    • /
    • 2010
  • In this study, eleven reinforced concrete beams, without stirrup, using high ductile fiber-reinforced mortar with ground granulated blast furnace slag(SHF Series, SHFSC Series) and standard specimens without or with stirrup(SSS, BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the shear performance of such test specimens, such as the load-displacement, the failure mode, the maximum strength, and shear strength. All the specimens were modeled in scale-down size. Test results showed that test specimens(SHF Series, SHFSC Series) was increased respectively the shear strength carrying capacity by 26%, 20% and the ductility capacity by 5.27, 5.75 times in comparison with the standard specimen without stirrup(SSS). And the specimens(SHF Series, SHFSC Series) showed enough ductile behavior and stable flexural failure.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.