• Title/Summary/Keyword: Load-Flow Control

Search Result 522, Processing Time 0.03 seconds

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

Underwater Packet Flow Control for Underwater Networks (수중네트워크를 위한 수중패킷 흐름제어기법)

  • Shin, Soo Young;Park, Soo Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.924-931
    • /
    • 2016
  • In this paper, Various network adaptive MAC scheduling technique is proposed to effectively overcome limits of narrow bandwidth and low transmission speed in underwater. UPFC(Underwater Packet Flow Control) is a technique to reduce both the number of transmission and transmission time using three types (Normal, Blocked, Parallel) of data transmission. In this technique, the load information, in which a transmission node have, is transmitted to destination node using marginal bit in reserved header. Then the transmitted information is referred to determine weighting factor. According to the weighting factor, scheduling is dynamically changed adaptively. The performance of UPFC is analyzed and flow control technique which can be applied to Cluster Based Network and Ad Hoc network as well.

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical Analysis - (모형말뚝 선단부 주변의 변형률 거동 분석 - 실내모형실험과 수치해석 비교 -)

  • Lee, Yong Joo;Lee, Jung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.159-167
    • /
    • 2012
  • In this study, laboratory model pile-load test and finite element analysis were carried out to compare and analyze the strain behaviour around the model pile tip. In order to simulate the pile load, both the LCM(load control method)and DCM(displacement control method) were introduced to determine which one is appropriate for the FE simulation. In contrast to the previous simulation method, two interface elements around the model pile were used to consider the slip effect in the finite element analysis and its results were compared to the model test. Through this study it was found that the degree of non-associated flow was a dominant factor in terms of numerical solution convergence. In addition, an improved FE mesh was required to obtain the symmetric distribution of the maximum shear strain contour.

Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea (수질오염총량 단위유역의 유량조건별 수체 손상 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Yoon, Chun-Gyeong;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.903-909
    • /
    • 2010
  • The purpose of this study was evaluated on the applicability of Load Duration Curve Method (LDC Method) using HSPF watershed model and sampling data for efficient TMDLs in Korea. The LDC Method was used for assessment pollutant characteristics in watershed and water quality variation in each water flow level. Load Duration Curve is applied for judge the level of impaired water-body and can be estimated the impaired level by pollutant, such as BOD, T-N, and T-P in this study depending on variation of stream flow. As a result, BOD, T-P was usually exceed the standard value at low flow and dry hydrologic period. Improvement of effluent concentration from WWTP and riparian buffer protection zone are effective to improve the water quality. T-N showed the worst condition at mid-range hydrologic period and moist hydrologic period. Therefore, soil erosion control program and BMPs for non-point source pollution control is effective for recovery the water quality, which can be useful method for management of water quality in the plan of recovery water quality spontaneously. Applicability of LDC Method was evaluated in the Nakbon A watershed. However, we need to consider more detailed and accumulated data set such as accurate GIS data and detail pollution data, and WWTP discharge water quality data for accurate evaluation of watershed. Overall, The LDC Method is adequate for evaluation of watersheds characteristics, and its application is recommended for watershed management and TMDL Implementation.

Trajectory Control of Excavator Actuators Using IMV (IMV를 이용한 굴착기 작업장치 궤적제어)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

Active control of flow over a sphere using electro-magnetic actuators (전자석 액츄에이터를 이용한 구 주위의 유동제어)

  • Park, Jin-Il;Choi, Hae-Cheon;Jeon, Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.497-501
    • /
    • 2000
  • Flow over a sphere is controlled experimentally at $Re=10^5$ using electro-magnetic actuators. The electro-magnetic actuator developed in this study is composed of the permanent magnet electro-magnet membrane and slot. Eight actuators are placed inside the sphere at equally spaced intervals on a latitudinal plane and the position of the control slot is 76 from the stagnation point. Each actuator generates a periodic blowing and suction through the slot at variable frequencies of $10{\sim}140Hz$ and variable amplitudes by controlling electric signals applied to the electro-magnet. Drag on the sphere measured using a load cell is significantly reduced with control at the forcing frequencies larger than the natural shedding frequency $({\approx}14Hz\;at\;Re=10^5)$, whereas drag is slightly increased at the forcing frequency of 10Hz. It is shown from pressure measurement that the static pressure in the rear surface of the sphere is significantly increased with control, indicating that the separation is delayed due to control. Flow visualizations also show that the detaching shear layer is more attracted to the sphere center with control, the separation bubble size is significantly reduced, and motion inside the bubble is very weak, as compared to the case of uncontrolled flow.

  • PDF

Study of the dynamic characteristics of a hydraulic power supply (유압공급장치의 동특성에 관한 연구)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1172-1177
    • /
    • 1993
  • Dynamic characteristics of a hydraulic power supply are studied theoretically and computationally. The transfer function between the supply pressure and the load flow is derived considering relief valve dynamics, accumulator dynamics, and flow line dynamics. Frequency responses and time responses are obtained in many conditions using the transfer function and nonlinear mathematical model respectively.

  • PDF

Properties of Multiple Load Flow Solutions and Prevention of Voltage Collapse in System with Induction Motor Load (전압다적해의 특성 및 유도전동기부하를 갖는 계통에 있어서의 전압안정)

  • Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 1985
  • As is well known, the power equations of the N-node system have 2N-1 voltage solutions at most. The vlotage solutions are characterized by the introduction of the mode concept in this paper. There are two mode voltages at one node. One is defined as the (+) mode voltage and the other is defined as the (-) mode one. In this paper, we show that the (-) mode voltage responds to the increase of the power condenser almost adversly to the response of the (+) one. We study how to prevent the voltage collapse in the system with the induction motor load. The critical values of the gain and the time constant in case of the continuous power condenser control, and of the unit power condenser and the closing time delay in case of the discontinuous control for the prevention of the voltage collapse, are calculated. The effect of the composition ratio of the impedance load to the induction moter load on the above critical values are also investigated.

  • PDF