• Title/Summary/Keyword: Load-CMOD curve

Search Result 9, Processing Time 0.016 seconds

A Study on the Flexural Toughness Characteristics of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인성 특성에 관한 연구)

  • Park, Sung-Soo;Lee, Jeong-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2004
  • This study reviewed various current methods of evaluating the toughness of steel fiber reinforced concrete specimens and criticized the use of various multiples of first-crack deflection to define toughness indices. The load-CMOD curve to determine toughness, instead of load-deflection curve, was used. The notched steel fiber reinforced concrete specimens With different water/cement ratio(0 35, 0.40, 0.45, 0 50) and fiber volume content(0.0%, 0 5%, 1 0%, 1.5%) were tested under third point bending.

Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen (표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측)

  • Park, Hong-Sun;Heo, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil;Cho, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

Determination of the Tension-Softening Curve of Concrete at Different Strength Level using Fictitious Crack Model (가상균열모델에 의한 강도 수준이 다른 콘크리트의 인장연화곡선 결정)

  • 오성진;박현재;김희성;진치섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.125-130
    • /
    • 2002
  • The most important material parameters are fracture energy and the stress-crack opening displacement($\sigma$-w) curve to determine the behavior of concrete. Especially, the relationship between the $\sigma$-w curve is strongly important to determine the load-displacement curve of concrete that has a major influence on the fracture behavior of a concrete. In this paper, notched plain concrete beams with different strength level were tested under three-point bending and fracture energy, the load-deflection curve, and the load-crack mouth opening displacement(CMOD) curve were obtained from the experimental data. Also, the fictitious crack model(FCM) was applied to determine the load-deflection curve of notched plain concrete beams using various types of $\sigma$-w curve model proposed by Petersson and we compared experimental results with numerical ones carried out by Finite Element Method(FEM).

  • PDF

Crack Growth Behaviors of Cement Composites by Fractal Analysis

  • Won, Jong-Pil;Kim, Sung-Ae
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The fractal geometry is a non-Euclidean geometry which describes the naturally irregular or fragmented shapes, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cementitious composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is apparent.ent.

  • PDF

An Experimental Study on the Flexural Fatigue Behavior of Steel Fiber Reinforced High Strength Concretes Beams with Single Edged Notch (노치를 가진 강섬유 보강 고강도 콘크리트 보의 휨 피로거동에 관한 실험적 연구)

  • 구봉근;김태봉;김흥룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.120-125
    • /
    • 1992
  • The fatigue tests were performed on the high strength concrete beams with single edged notch which was reinforced steel fiber. The steel fibers were used 1.0 percent by volume fraction. These were tested consists of constant amplitude tests for different levels of loading. The test program included endurance limit with repect to flexural fatigue and relation of load-CMOD(crack mouth opening displacement). The results of test, it is found from S-N curve that the fatigue strength for a life of 2 million cycles of load was approximately 70percent with respect to the static ultimate strength .

  • PDF

Numerical simulation of fracture and damage behaviour of concrete at different ages

  • Jin, Nanguo;Tian, Ye;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.221-241
    • /
    • 2007
  • Based on the experiment results, the damage and fracture behavior of concrete at the ages of 1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element program, ABAQUS. The critical stress intensity factor $K_{IC}^s$ and the critical crack tip opening displacement ($CTOD_C$) of concrete were calculated with effective-elastic crack approach for the three-point bending test of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared cracking model coupling with damaged variable was adopted to evaluate the onset and development of microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the damage plastic model which took both damage and plasticity as inner variables with user subroutines. All the numerical simulated results show good agreement with the experimental results.

Crack Growth Behavior of Cement Composites by Fractal Analysis (시멘트 복합체의 균열성장거동에 관한 프랙탈 해석)

  • 원종필;김성애
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • The fractal geometry is a non-Euclidean geometry which discribes the naturally irregular or fragmented shaps, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cemposite composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is appearent.ent.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.