• 제목/요약/키워드: Load tracking

Search Result 435, Processing Time 0.034 seconds

Prediction for Possibility of the Electric Fire by Tracking Breakdown (트래킹에 의한 전기화재 가능성 예측)

  • Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • Tracking, which is one of main reasons of the electric fire, progresses gradually, and therefore, the possibility of fire caused by tracking can be predicted by analyzing the stage of its progress. This paper is conducted in order to predict possibility of the electric fire caused by the tracking in the simulated electric equipment with load. Non-inductive resistance is used as the load. The tracking is happened in a Polyvinyl-chloride-sheathed flat cord, which is a part of the simulated electric equipment by means of dropping of electrolyte droplet. In order to predict the possibility of electric fire caused by tracking, we detect the whole current waveforms of the simulated electric equipment. The time-energy analysis and probability distribution are used for analysis of the tracking progress from the whole current waveforms. In accordance with the results is used for input date of Neural networks, the neural networks can be predict possibility of the electric fire in the electric equipment by 4 stages.

Robust tracking controller design for a load variation (부하변화에 견실한 추적 제어기 설계)

  • 김광태;정구락;김재환;박원철;박래석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.629-632
    • /
    • 1991
  • Load Variation effects on the system driving performance. Therefore, this paper presents as a application example of Anti-windup method using general incremental form for a gun servo system of load variation involved. Also, this method can be easily implemented compared to gain scheduling technique.

  • PDF

Autonomous Tracking Control of Unmanned Electric Bicycle (무인자전거의 자율주행제어)

  • 김성훈;임삼수;함운철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.446-449
    • /
    • 2004
  • In the former researches〔2〕〔5〕 for the unmanned bicycle system, we do only focus on stabilizing it by using the lateral motion of mass which plays important role in driving a bicycle system. In this papers, we suggest an algorithm for deriving steering angle and speed for a given desired tracking path. As you may see in this paper, load mass balance system plays important role in stabilization and it is also discussed. We propose a control algorithm for the autonomous self stabilization of unmanned bicycle by using nonlinear compensation-like control based on the Lyapunov stability theory We then propose a tracking control strategy by moving the center of load mass left and right respectively. From the computer simulation results, we can show the effectiveness of the proposed control strategy.

  • PDF

T-S Fuzzy Tracking Control of Surface-Mounted Permanent Magnet Synchronous Motors with a Rotor Acceleration Observer

  • Jung, Jin-Woo;Choi, Han-Ho;Kim, Tae-Heoung
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.294-304
    • /
    • 2012
  • This paper proposes a fuzzy speed tracking controller and a fuzzy rotor angular acceleration observer for a surface-mounted permanent magnet synchronous motor (SPMSM) based on the Takagi-Sugeno (T-S) fuzzy model. The proposed observer-based controller is robust to load torque variations since it utilizes rotor angular acceleration information instead of the load torque value. Linear matrix inequality (LMI) sufficient conditions are given to compute the gain matrices of the speed tracking controller and the observer. In addition, it is mathematically verified that the proposed observer-based control system is asymptotically stable. Simulation and experimental results are presented to confirm that the proposed control algorithm assures a better transient behavior and less sensitivity under model parameter variations than the conventional PI control method.

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.

Power Quality Control of Hybrid Wind Power Systems using Robust Tracking Controller

  • Ko, Heesang;Yang, Su-Hyung;Lee, Young Il;Boo, Chang-Jin;Lee, Kwang Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.688-698
    • /
    • 2015
  • This paper presents a modeling and a controller design for a hybrid wind turbine generator, especially with an operating mode of battery energy-storage system and a dumpload that contribute to the frequency control of the system while diesel-synchronous unit is not in operation. The proposed control scheme is based on a robust tracking controller, which takes an account of system uncertainties due to the wind flow and load variations. In order to provide robustness for system uncertainties, the range of operation is partitioned into three operating conditions as sub-models in the controller design. In the simulation study, the proposed robust tracking controller (RTC) is compared with the conventional proportional-integral (PI) controller. Simulation results show that the effectiveness of the RTC against disturbances caused by wind speed and load variation. Thus, better quality of the hybrid wind power system is achieved.

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Han, Dong-Hee;Lee, Un-Yong;Lim, Kee-Joe;Choi, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1121-1124
    • /
    • 2004
  • Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. The diagnosis methods in off-line most are the method for virgin and last aged sample. However, the diagnosis method in on-line is method that can be evaluate sample state as progressing continuously aging test in beginning, The diagnosis method in on-line is arranged as following: leakage current measurement, electric field, surface state investigation, thermal image, emitting light measurement and then so. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination.

  • PDF

Tracking Control of IPMSM using the Active Disturbance Rejection Control (매입형 영구자석 동기전동기의 능동외란제거제어를 이용한 추종제어)

  • Jeon, Yong-Ho;Chae, Seong-Byeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.859-866
    • /
    • 2022
  • Active disturbance rejection control is a method in which the disturbance is removed from the controller by estimating the state variable using the Luenberger observer. The Luenberger observer is estimated by defining a nonlinear term including disturbance with constant characteristics in a steady state as a state variable. It can be shown that the speed tracking performance is improved by compensating the estimated state variable to the PI controller and the IP controller. The disturbance removal performance of the tracking control can be confirmed by observing that the estimated state error is within 1.9 [%] in the case of load fluctuation and the steady-state state tracking error converges to zero.

An Adaptive Fuzzy Based Control applied to a Permanent Magnet Synchronous Motor under Parameter and Load Variations (ICCAS 2004)

  • Kwon, Chung-Jin;Kim, Sung-Joong;Won, Kyoung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1168-1172
    • /
    • 2004
  • This paper presents a speed controller based on an adaptive fuzzy algorithm for high performance permanent magnet synchronous motor (PMSM) drives under parameter and load variations. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by adaptive fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF